K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

\(x^2+5y^2+2x-4xy-10y+14=0\)

\(\Leftrightarrow x^2+2x\left(1-2y\right)+\left(1-4y+4y^2\right)+y^2-6y+9+5=0\)

\(\Leftrightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+5=0\)

Vì \(\left(x+1-2y\right)^2\ge0;\left(y-3\right)^2\ge0\)(với mọi x,y)

nên \(\left(x+1-2y\right)^2+\left(y-3\right)^2+5\ge5\)

Vậy không tồn tại các số thực x,y thỏa mãn ĐK đề bài

4 tháng 12 2019

A = x+ 5y2 + 2x - 4xy - 10y + 14

A = x- x+ x+ y2 + 4y2 + 2x - 4xy - 10y + 14

A = ( y2 - 10y + 25 ) - ( x2 - 2x + 1 ) + ( x2 - 4xy + 4y2 ) + x2 + 10

A = ( y - 5 )2 - ( x - 1 )2 + ( x - 2y )2 + x2 + 10 \(\ge\)10

Dấu " = " xảy ra \(\Leftrightarrow\)y - 5 = 0 và x - 1 = 0

                            \(\Rightarrow\)y        = 5 và x       = 1

Min A = 10 \(\Leftrightarrow\)y = 5 và x = 1

Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)

\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)

\(\Rightarrow A>0\left(đpcm\right)\)

25 tháng 7 2019

Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm