K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

\(x^2+5y^2+2x-4xy-10y+14=0\)

\(\Leftrightarrow x^2+2x\left(1-2y\right)+\left(1-4y+4y^2\right)+y^2-6y+9+5=0\)

\(\Leftrightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+5=0\)

Vì \(\left(x+1-2y\right)^2\ge0;\left(y-3\right)^2\ge0\)(với mọi x,y)

nên \(\left(x+1-2y\right)^2+\left(y-3\right)^2+5\ge5\)

Vậy không tồn tại các số thực x,y thỏa mãn ĐK đề bài

29 tháng 7 2017

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

b/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

1 tháng 9 2017

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

13 tháng 9 2016

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)

với mọi x,y

b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)

\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)

Bạn xem lại đề

 

 

13 tháng 9 2016

2 câu trên đã có kết quả, mình giải quyết câu c nhá

5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0

5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3

=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1

=(2x + 1)2 + (y - 1)+ (3y - x)2 + 1

(2x + 1)2 \(\ge\)0 với mọi x

 (y - 1)\(\ge\) 0 với mọi y

 (3y - x)2\(\ge\) 0 với mọi x và y

1>0

=> ĐPCM

25 tháng 7 2019

Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

14 tháng 9 2016

bạn làm rõ số mũ ở đâu ra dùm mình nhé, mình giải hết cho, nhưng câu b sai đề nhé bạnhihi

15 tháng 9 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm 

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm