Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik ko bít
I don't now
................................
.............
b, ta có : x/3 = y/5 -> x/6 = y/10 ; y/2 = z/4 -> y/10 = z/20 . suy ra : x/6 = y/10 = z/20
áp dụng dãy tỉ số bằng nhau ta có : x/6 = y/10 = z/20 = 2x + y - z / 12 + 10 - 20 = 16 / 2 = 8
suy ra : x/6 = 8 -> x = 48
y = 80
z = 160
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)
Áp dụng tinh chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)
\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)
Vậy .......
Mong bạn thông cảm cho . Dấu " / " là phân số nhé !
x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16
=> x/2 = y/3 <=> x/8 = y/12 (1)
y/4 = z/5 <=> y/12 = z/15 (2)
Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16
=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2
=> x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16
y = 24
z = 30
Chúc bạn học tốt !
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
a) Ta có : x/2=y/3; y/5=z/4 =>
= x/10=y/15 ; y/15= z/12
=> x/10= y/15=z/12
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)
+) Vì x/10 =(-7) => x=(-70)
+) Vì y/15 =(-7) => y=(-105)
+) Vì z/12 =(-7) => z=(-84)
NHẤN ĐÚNG NHA BẠN !
b)
Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7
Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7
= 2.x/6 = 3.y/12 = z/7
Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:
2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7
=186/11
Từ đó tính được x,y,z nha
NHẤN ĐÚNG NHA BẠN
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\\x^2-y^2=-16\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)
\(\Rightarrow x^2=\frac{1}{5}.64=\frac{64}{5}\Rightarrow x=+_-\sqrt{\frac{64}{5}}\)
\(y^2=\frac{1}{5}.144=\frac{144}{5}\Rightarrow y=+_-\sqrt{\frac{144}{5}}\)
\(z^2=\frac{1}{5}.255=51\Rightarrow z=+_-\sqrt{51}\)
CHÚC BẠN HỌC TỐT