K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 3 2021

\(4x^2+4y^2-4xy=2x+2y-1\)

\(\Leftrightarrow2x^2-4xy+2y^2+2x^2-2x+2y^2-2y+1=0\)

\(\Leftrightarrow2\left(x-y\right)^2+2\left(x-\frac{1}{2}\right)^2+2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}=0\)

Suy ra phương trình vô nghiệm. 

19 tháng 8 2016

1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0 

⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0 

Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔ 

(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1 

2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10

= (x+2y)^2 - 2(x+2y) +10

= 5^2 - 2x5 +10

= 25

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)

31 tháng 7 2018

a)  \(4x^2-4xy+2y^2+2y+1=\left(2x-y\right)^2+\left(y+1\right)^2\)

b)  \(x^2+2x+y^2-4y+5=\left(x+1\right)^2+\left(y-2\right)^2\)

c)  bạn ktra lại đề

23 tháng 6 2017

a, \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3

\(\Leftrightarrow A=9-12+1=-2\)

Vậy A = -2 khi x + y = 3

b, \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=x^2+4xy+4y^2-2x-4y+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 có:
\(B=25-10+10=25\)

Vậy B = 25 khi x + 2y = 5

18 tháng 11 2018

a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)

Với mọi x, y ta có :

\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)

\(\Leftrightarrow pt\) vô nghiệm

29 tháng 10 2017

\(A=2x^2+4xy+2y^2-4x-4y+1\)

\(=\left(2x^2+4xy+2y^2\right)-\left(4x+4y\right)+1\)

\(=2\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1\)

\(=2\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=2\left(x+y\right)\left(x+y-2\right)+1\)

Thay x+ y = 3 vào biểu thức trên ,có :

\(2.3.\left(3-2\right)+1\) = 7

Vậy tại x+ y= 3 thì giá trị của biểu thức A là 7