Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2
b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)
c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)
\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)
d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)
\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)
\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)
Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)
e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)
bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v
\(5x^2+2y^2-4xy-2x-4y+5=0\\ \Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(2x-y\right)^2+\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(2x-y\right)^2\ge0\forall x,y\in R \\ \left(x-1\right)^2\ge0\forall x\in R\\ \left(y-2\right)^2\ge0\forall y\in R\)
Nên dấu "=" xảy ra khi và chỉ khi \(\left(2x-y\right)^2=0\\ \left(x-1\right)^2=0\\ \left(y-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\2.1-2=0\left(thoảmãn\right)\end{matrix}\right.\)
Vậy cặp số (x;y) cần tìm là (1:2)
1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10
= (x+2y)^2 - 2(x+2y) +10
= 5^2 - 2x5 +10
= 25
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)
\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)
\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)
b)\(4x^2+4x+5+y^2-4y\)
\(=\left[\left(2x\right)^2+4x+1\right]+\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2+\left(y-2\right)^2\)
c) \(4x^2+5y^2+4xy-12y+9\)
\(=\left(4x^2+4xy+y^2\right)+\left(4y^2-12y+9\right)\)
\(=\left(2x+y\right)^2+\left(2y-3\right)^2\)
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm