Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
`Answer:`
Ta có lý thuyết sau: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác `0` và có cùng phần biến. Các số khác `0` được coi là những đơn thức đồng dạng.
Vậy đơn thức `-1/2 xy^2` đồng dạng với đơn thức `xy^2`
`=>` Chọn C.
\(C.xy^2\)
\(\text{Lưu ý:Hai đơn thúc đồng dạng là hai đơn thúc có hệ số khác 0 và có cùng phần biến.}\)
\(\text{Lí thuyết:SKG/33 tập 2}\)
a)phân tích 12 thành tích 2 thừa số nguyên tố có cơ số là 2 và 3
b)2x=4y-1=(22)y-1=22y-2
=>x=2y-2(1)
27y=3x+8=>(33)y=3x+8=>33y=3x+8=>3y=x+8 (20
thay (1) vào (2) ta có:
3y=(2y-2)+8=2y+6
=>3y-2y=6=>y=6
do đó x=2.6-2=10
Vậy (x;y)=(10;6)
x=-2
y=3