Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:\(2015-|y-2015|=y\)nếu \(y\le0\)
và \(2015-|y-2015|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\le2015\)thì:
\(y-2015-|y-2015|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)( Vì y là số tự nhiên )
\(\Rightarrow x=0\)( Vì \(2016^0-1=0\))
Nếu \(y>2015\)thì:
\(y-2015-|y-2015|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;...;+\infty\)
\(\Rightarrow x=0\)
Từ cả 2 trường hợp ta có:
\(y=0;1;2;3;4;...;+\infty\)hay \(y=N\)
\(x=0\)
Vì \(\hept{\begin{cases}\left|x-y+3\right|\ge0\\\left(2y-3\right)^{2016}\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\y=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ..........
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge\left|x-2014+2016-x\right|+0=\left|-2\right|+0=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015\)
Vậy \(MIN_A=2\) khi x = 2015
b, Ta có: \(-y^2\le0\Rightarrow25-y^2\le25\)
\(\Rightarrow8\left(x-2015\right)^2\le25\)
\(\Rightarrow\left(x-2015\right)^2< 4\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2015\right)^2=0\\\left(x-2015\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2015\\x-2015=\pm1\end{matrix}\right.\)
+) Xét \(x=2015\Rightarrow y=\pm5\) ( t/m )
+) Xét \(x=1\Rightarrow y\notin Z\) ( loại )
+) Xét \(x=-1\Rightarrow y\notin Z\) ( loại )
Vậy x = 2015 và \(y=\pm5\)
25-y2= 8 (x-2015)2
=> 8(x-2015)2+ y2 =25 (1)
Vì y2 lớn hơn hoặc bằng 0 với mọi y
8(x-2015)2 lớn hơn hoặc bằng 0 với mọi x
=> 8(x-2015)2 lớn hơn hoặc bằng 25
=> (x-2015)2 > hoặc bằng \(\dfrac{25}{8}\)
=>( x-2015)2 = 1 thay vào (1) => y2 = 17 ( loại)
hoặc (x-2015)2 = 0 thay vào (1) => y2 = 25 => yϵ { -5; 5}
=> x= 2015
Vậy x= 2015 ; y=5
hoặc x= 2015 ; y = -5
b) 2016x -1 = y-2015 - |y-2015|
2016x-1= y-2015-y-2015
2016x-1=0
2016x = 1
suy ra x = 0
Ta thấy \(2015-\left|y-2015\right|=y\)nếu \(y\le0\)
và \(2015-\left|y-2015\right|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\ge2015\)thì \(y-2015-\left|y-2015\right|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)(vì y là số tự nhiên)
Nếu \(y>2015\)thì:
\(y-2015-\left|y-2015\right|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;.....\)
\(\Rightarrow x=0\)
Từ 2 trường hợp trên , ta có:
\(y=0;1;2;3;4;5;...\)hay \(y\in N\)
\(x=0\)