K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

sử dụng nguyên lí kẹp mà làm

23 tháng 2 2019

Với x = 0 thì \(y^3=2\) (vô nghiệm)

Với x khác 0.Dễ thấy \(y^3>x^3\)

Có x khác 0 và x thuộc Z nên \(x^2\ge1\Rightarrow x^2-1\ge0\)

Lại có: \(y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\)

Từ đây suy ra \(x^3< y^3\le\left(x+1\right)^3\).Nên:

\(y^3=\left(x+1\right)^3\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\)

\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)

Thay vào tìm y.

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

27 tháng 3 2018

Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x ∈ Z ⇒x ∈ {−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1 ⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)

4 tháng 10 2020

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{4}\right)^2+\frac{7}{16}>0\forall x\)

\(\Rightarrow x^3< y^3\left(1\right)\)

Giả sử:\(y^3< \left(x+2\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\)

\(\Leftrightarrow-4x^2-9x-6< 0\)

Mai lm tiếp