Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Bạn lập bảng xét dấu giùm mình nhé
Nếu bạn chưa quen cách làm này thì có thể lên mạng nhé
Chúc bạn học tốt
\(\text{vì x,y là số nguyên}\Rightarrow\left|x-1\right|\in Z,\left|y-2\right|\in Z\)
Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left|y-2\right|\ge0\end{cases}\Rightarrow\text{Để }\left|x-1\right|+\left|y-2\right|=2}\)
\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left|y-2\right|=2\end{cases}\text{hoặc }\hept{\begin{cases}\left|x-1\right|=2\\\left|y-2\right|=0\end{cases}}}\text{hoặc }\hept{\begin{cases}\left|x-1\right|=1\\\left|y-2\right|=1\end{cases}}\)
Tự thay vào mà tính :))
p/s: cho tớ hỏi bạn kia lập bảng rồi tính = cách nào vậy, làm rõ xem ;vvv
Ta có:
\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
\(\Rightarrow\frac{3x+2y}{6}=\frac{x+y}{5}\)
\(\Rightarrow5\left(3x+2y\right)=6\left(x+y\right)\)
\(\Rightarrow15x+10y=6x+6y\)
\(\Rightarrow9x+4y=0\)
\(\Rightarrow9x=-4y\)
\(\Rightarrow\frac{x}{y}=-\frac{9}{4}\)
Vậy, những cặp số \(\left(x,y\right)\)thỏa mãn đầu bài là những cặp số có tỷ lệ là \(-\frac{9}{4}\).
Ví dụ: \(\left(-9,4\right),\left(-18,8\right),\left(18,-8\right),...\)