Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ps A = 4x-3/2x+1
a, Tìm x để A > 0
b Tìm x để A < 0
c , tìm x để A = 0
đ tìm x thuộc Z để A thuộc Z
\(A=\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=2-\frac{5}{2x+1}\)
a) A>0 => \(\frac{5}{2x+1}<2\Leftrightarrow2x+1>\frac{5}{2}\Leftrightarrow2x>\frac{3}{2}\Leftrightarrow x>\frac{3}{4}\)
b)A<0 => x <3/4 ; x khác -1/2
c)A =0 khi x = 3/4
d) A thuộc Z khi 2x+1 thuộc U(5) ={1;5;-1;-5}
2x+1 =1 => x =0
2x+1=-1 => x = -1
2x+1 =5 => x =2
2x+1 = -5 => x =-3
Do đề bài không cho đk của n nên không thể giải theo cách thông thường là lập bảng xét ước được!
ĐK: n khác 6
a) Đặt \(\frac{n+9}{n-6}=k\left(k\inℕ\right)\Rightarrow n=kn-6k-9\)
\(\Leftrightarrow n\left(k-1\right)=6k+9\)
Với k = 1 thì \(0=6+9\) (vô lí)
Với k khác 1 thì chia hai vế cho k - 1 được: \(n=\frac{6k+9}{k-1}\left(k\inℕ\right)\)
b) \(\frac{n+9}{n-6}=\frac{3}{4}\Leftrightarrow n+9=\frac{3}{4}n-\frac{9}{2}\)
Chuyển vế,ta có: \(\frac{1}{4}n=-\frac{27}{2}\Rightarrow n=-54\)
c) \(\frac{n+9}{n-6}=1+\frac{15}{n-6}\).Để p/s tối giản thì \(\frac{15}{n-6}\) tối giản tức là:
\(\Leftrightarrow\left(15;n-6\right)=1\Leftrightarrow n-9⋮1\Leftrightarrow n=k+9\)
Câu c) mmình ko chắc
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
\(\frac{2x+15}{x+1}=\frac{2\left(x+1\right)+13}{x+1}=\frac{2\left(x+1\right)}{x+1}+\frac{13}{x+1}=2+\frac{13}{x+1}\)
Để \(2+\frac{3}{x+1}\in Z\Leftrightarrow\frac{3}{x+1}\in Z\)
=> x + 1 ∈ Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> x ∈ { - 4 ; - 2 ; 0 ; 2 }
a)\(A\inℤ\)
\(\Leftrightarrow6n-1⋮3n+2\)
\(\Leftrightarrow3n+2⋮3n+2\)
\(\Leftrightarrow6n+4⋮3n+2\)
\(\Leftrightarrow6n+4-\left(6n-1\right)⋮3n+2\)
\(\Leftrightarrow6n+4-6n+1⋮3n+2\)
\(\Leftrightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng
3n+2 | -5 | -1 | 1 | 5 |
---|---|---|---|---|
n | \(-\frac{7}{3}\) | -1 | \(-\frac{1}{3}\) | 1 |
nhận xét | loại | chọn | loại | chọn |
b)Gọi d là ƯCLN 6n-1 và 3n+2
<=>6n-1\(⋮\)d 3n+2\(⋮\)d
<=>________ 6n+4\(⋮\)d
<=>6n+4-6n+1\(⋮\)d
<=>5\(⋮\)d
Lập bảng(như câu a)
=>\(n\in\left\{\pm1\right\}\)để A là ps tối giản
c)(chịu)
Để : \(\frac{x-2}{x+3}\in N\) thì x - 2 chia hết cho x + 3
=> x + 3 - 5 chia hết cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {1;5}
=> x = {-2;2}
Vậy x = {-2;2}
Để \(\frac{x-2}{x+3}\)là số tự nhiên thì x - 2 chia hết cho x + 3
=> x - 2 chia hết cho x + 3
x + 3 - 5 chia hết cho x + 3
=> 5 chia hết x + 3
=> x + 3 thuộc Ư(5) = { 1 ; 5 ; -1 ; -5 }
=> x + 3 thuộc { 1 ; 5 ; -1 ; -5 }
=> x thuộc { -2 ; 2 ; -4 ; -8 }
Vậy x = -2 ; x = 2 ; x = -4 ; x = -8
Để \(\frac{2x+1}{x-3}\) là số tự nhiên
=> 2x + 1 \(⋮\)x - 3
=> 2x - 6 + 7 \(⋮\)x - 3
=> 2 . ( x - 3 ) + 7 \(⋮\)x - 3 mà 2 . ( x - 3 ) \(⋮\)x - 3 => 7 \(⋮\)x - 3
=> x - 3 thuộc Ư ( 7 ) = { 1 ; 7 }
=> x thuộc { 4 ; 10 }
Vậy x thuộc { 4 ; 10 } thì \(\frac{2x+1}{x-3}\)có giá trị là số tự nhiên
Để ps đó có gtri là STN
\(\Rightarrow2x+1⋮x-3\)
\(\Rightarrow2\left(x-3\right)+7⋮x-3\)
\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)\)
Mà Ư(7)=1,-1,7,-7}
TA CÓ BẢNG KẾT QUẢ:
BẢNG HƠI XẤU! THÔNG CẢM NHA VÀ NHỚ K CHO MIK NHA