Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2-3x^2\right)+\left(6x+3x\right)+\left(8-1\right)=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy nghiệm của p/t là : \(\dfrac{10}{9}\)
b ) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=-\dfrac{11}{25}\)
Vậy nghiệm của p/t là : \(-\dfrac{11}{25}\)
\(\left(x-1\right)^3-\left(3x-5\right)\left(3x+5\right)=\left(x-3\right)\left(x^2+3x+9\right)-3x\left(x-1\right)-9x^2+x\)
\(\Leftrightarrow x^3-3x^2+3x-1-9x^2+25=x^3-27-3x^2+3x-9x^2+x\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(-3x^2-9x^2+9x^2+3x^2\right)+\left(3x-3x-x\right)-1+25+27=0\)
\(\Leftrightarrow-x+51=0\)
\(\Leftrightarrow x=51\)
Vậy ,....
\(x\left(3x-5\right)-9x+15=0\)
\(\Leftrightarrow x\left(3x-5\right)-3\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
\(3x\left(x-5\right)-2\left(5-x\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=5\end{cases}}\)
\(\left(x-1\right)^3-\left(3x-5\right)\left(3x+5\right)=\left(x-3\right)\left(x^2+3x+9\right)-3x\left(x-1\right)-9x^2+x\) \(\text{⇔}x^3-3x^2+3x-1-9x^2+25=x^3-27-3x^2+3x-9x^2+x\) \(\text{⇔}3x-4x+51=0\)
\(\text{⇔}x=51\)
KL.......
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
Biểu thức này chỉ có GTLN thôi.
\(A=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)}=\frac{3}{2\left[\left(x+\frac{1}{4}\right)^2+\frac{7}{16}\right]}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)
GTLN của A là \(\frac{24}{7}\) khi \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)
ko có kết quả thì làm sao làm được
cái biểu thức kia bằng bao nhiêu thì ms tìm đc x chứ bạn