Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Đặt \(A=2x^2+9y^2-6xy-6x-12y+1974\)
\(\Rightarrow A=x^2+9y^2+4-6xy-12y+4x+x^2-10x+25+1945\)
\(\Rightarrow A=\left(x^2+9y^2+4-6xy-12y+4x\right)+\left(x^2-10x+25\right)+1945\)
\(\Rightarrow A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1945\ge1945\)
Dâu ''='' xảy ra khi \(\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)
Vậy GTNN của A = 1945 tại x = 5 và y = 7/3
\(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}}\)
a,<=> x2-4x+22+y2-8y+42-14
<=> (x2-2x2+22)+(y2-2x4+42)-14
<=> (x-2)2+(y-4)2-14
Vì (x-2)2+(y-4)2>= 0
=> F >= -14 => MIn F = -14 <=> x=2, y=4
b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2
<=> (x+5-2y )2+(y-1)2+2
Vì (x+5-2y) 2+(y-1)2 >= 0
=> G >= 2 => Min =2 <=> y=1, x= -3
\(F=x^2-4x+y^2-8y+6\)
\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)
\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)
\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
cái biểu thức kia bằng bao nhiêu thì ms tìm đc x chứ bạn
\(P=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)-36\)
\(P=\left(x^2-6x+x-6\right)\left(x^2-3x-2x+6\right)-36\)
\(P=\left(x^2-5x-6\right)\left(x^2-5x+6\right)-36\)
\(P=\left(x^2-5x\right)^2-6^2-36\)
\(P=\left(x^2-5x\right)^2-72\)
Vì \(\left(x^2-5x\right)^2\ge0\Leftrightarrow\left(x^2-5x\right)^2-72\ge-72\Leftrightarrow P\ge-72\Leftrightarrow min_P=-72\)
Đẳng thức xảy ra \(\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy GTNN của P là -72 khi x = 0 hoặc x = 5
x + 1 = ( x + 1 )2
x + 1 = x2 + 2x + 1
x - 2x - x2 = - 1 + 1
- x - x2 = 0
- x ( x + 1) = 0
TH1: - x = 0 suy ra x = 0
TH2: x + 1 = 0 suy ra x = - 1
Vậy x = 0 hoặc x = - 1.
a,\(A=x^2-x-1\)
\(=x^2-x+\frac{1}{4}-\frac{5}{4}\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)
Vì:\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\forall x\)
Hay:\(A\ge0\forall x\)
Dấu = xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy Min A=-5/4 tại x=1/2
Hai phần cn lại lm tg tự nha bn
\(\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
\(TH1:x-1=0\Leftrightarrow x=1\)
\(TH2:x+1=0\Leftrightarrow x=-1\)
\(TH3:x+2=0\Leftrightarrow x=-2\)
nhân đa thức vs đa thức , ko phải tìm x đâu bạn ạ! dù sao cững cảm ơn nh!
Biểu thức này chỉ có GTLN thôi.
\(A=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)}=\frac{3}{2\left[\left(x+\frac{1}{4}\right)^2+\frac{7}{16}\right]}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)
GTLN của A là \(\frac{24}{7}\) khi \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)