Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017
= ( x1 + x2 + x3 + ... + x2016 + x2017 ) + x2016
= 0 + x2016
Mà x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017
= 1 + 1 + 1 + 1 + ... + 1 + 1
= 1009
\(\Rightarrow\)x2016 = 1009
P/s : bạn cố gắng hiểu nha, kết hợp từ hai vế đã được suy ra là tìm được x2016
bn ơi sao lại ra x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017 hả bn
a) \(1^3+2^3+3^3=1+8+27=36=6^2\)
b) Đề sai
c) \(15^2-15^2=0=0^2\)
d) \(12^2+16^2=260=256+4=16^2+2^2\)
Bài 2:
213 = 2.102 + 1.10+3.100
121 = 1.102 + 2.10+100 . 1
1256 = 1.103 + 2.102 + 5.10 + 100 . 6
2006 = 2.103 + 6. 100
Bạn có học thầy Long trường THCS Lê Quý Đôn ,thành phố Hải Dương hay ko?
\(A=3^2-3^5+3^8-3^{11}+...+3^{98}-3^{101}\)
\(\Rightarrow27A=3^5-3^8+3^{11}-3^{14}+...+3^{101}-3^{104}\)
\(\Rightarrow28A=9-3^{104}\)
\(\Rightarrow B+28A=3^{104}-3^{104}+9=9\)
giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1
= (n2
+ 3n) (n2
+ 3n + 2) + 1
= (n2
+ 3n)2
+ 2(n2
+ 3n) + 1
= (n2
+ 3n + 1)2
Với n là số tự nhiên thì n2
+ 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.
Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì
an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Lời giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1
= (n2 + 3n) (n2 + 3n + 2) + 1
= (n2 + 3n)2 + 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.
CHÚC BẠN HỌC TỐT MÔN TOÁN NHÁ!!! vÀ CÁC MÔN KHÁC NỮA!!! ( Nếu thấy câu trl của mk đúng thì cho mk 1 k nhak m.n) Thanks!!!