Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
1) (4x−7)2−5×|7−4x|=0
Có (4x-7)2 \(\ge0\) với mọi x
|7−4x| \(\ge0\) với mọi x
<=> 5|7−4x| \(\ge0\) với mọi x
Để (4x−7)2−5×|7−4x|=0 thì \(\left\{{}\begin{matrix}\left(4x-7\right)^2=0\\5|7-4x|=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}4x-7=0\\7-4x=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}4x=7\\4x=7\end{matrix}\right.\)<=>\(x=\dfrac{7}{4}\)
Vậy \(x=\dfrac{7}{4}\)
2) \(4^{x-2}+4^{x+1}=1040\)
<=> \(4^{x+1}.4^{-3}+4^{x+1}=1040\)
<=> \(4^{x+1}\left(4^{-3}+1\right)=1040\)
<=> \(4^{x+1}.\dfrac{65}{64}=1040\)
<=> \(4^{x+1}=1024=4^5\)
=> x+1=5 <=> x=4
Vậy x=4
\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0.^{\left(1\right)}\)
\(NX\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}\Rightarrow}\left(1\right)\ge0\)
Dấu \("="\)xảy ra khi và chỉ khi
\(\hept{\begin{cases}\left|2x^2+4x\right|=0\\\left|x^2+5x+6\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(2x+4\right)=0\\x\left(x+5\right)=0-6\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x\inƯ\left(6\right)\end{cases}\Rightarrow x=-2}\)
Vậy x = -2
\(\left|2x^2+4x\right|+\left|x^2+5x+6\right|=0\)
Ta có : \(\hept{\begin{cases}\left|2x^2+4x\right|\ge0\\\left|x^2+5x+6\right|\ge0\end{cases}}\Rightarrow\left|2x^2+4x\right|+\left|x^2+5x+6\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}2x^2+4x=0\\x^2+5x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(2x+4\right)=0\left(1\right)\\x\left(x+5\right)=-6\left(2\right)\end{cases}}\)
(1) \(x\left(2x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(2) x(x+5)=-6
=> x2+5x=-6
=> x2+5x+6=0
=> x2 +3x+2x+6=0
=> x(x+3)+2(x+3) = 0
=> (x+3)(x+2)=0
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy ........
Câu 1:
Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=x^4+2x^2+1\)
\(=\left(x^2+1\right)^2\ge1\forall x\)
hay M(x) vô nghiệm(đpcm)
Câu 2:
Ta có: A(0)=5
\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)
\(\Leftrightarrow m=5\)
Ta có: A(1)=-2
\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)
\(\Leftrightarrow5+n=-2\)
hay n=-2-5=-7
Ta có: A(2)=7
\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)
\(\Leftrightarrow-9+2p=7\)
\(\Leftrightarrow2p=16\)
hay p=8
Vậy: Đa thức A(x) là 5-7x+8x(x-1)
\(=5-7x+8x^2-8x\)
\(=8x^2-15x+5\)
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
a: \(\Leftrightarrow\left|x+2\right|=6x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{6}\\\left(6x+1-x-2\right)\left(6x+1+x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{6}\\\left(5x-1\right)\left(7x+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
b: Trường hợp 1: x<2
Pt sẽ là 3-x+2-x=7
=>5-2x=7
=>2x=-2
hay x=-1(nhận)
Trường hợp 2: 2<=x<3
Pt sẽ là 3-x+x-2=7
=>1=7(vô lý)
Trường hợp 3: x>=3
Pt sẽ là x-3+x-2=7
=>2x-5=7
=>x=6(nhận)
d: \(\Leftrightarrow4^x\cdot\left(1+4^3\right)=4160\)
\(\Leftrightarrow4^x=64\)
hay x=3
a) |2x-1|=5-x
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b)|2x-1|>2 <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
c)\(\Leftrightarrow-5< 3x-7< 5\) <=>2/3<x<4