Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)(đk : \(x\ne0\))
=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
=> \(\frac{7}{x}=\frac{7}{15}\)
=> x = 15 (tm)
b) \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
=> \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)
=> \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
=> \(\frac{1}{3}-\frac{1}{n+3}=\frac{10}{31}\)
=> \(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
=> 2x = 90
=> x = 45
a,\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
b,\(\frac{x}{2008}-\left(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+....+\frac{2}{240}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{15}-\frac{1}{16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-2.\frac{3}{16}=\frac{5}{8}\)
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
\(\frac{x}{2008}=\frac{5}{8}+\frac{3}{8}=1=\frac{2008}{2008}\)
=> x = 2008
Ta có:
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\)
\(=\frac{7}{x}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(=\frac{7}{x}+\frac{1}{5}-\frac{1}{45}\)
\(=\frac{7}{x}+\frac{9}{45}-\frac{1}{45}=\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}=\frac{7}{15}\)
\(\Rightarrow x=15\)
Vậy x=15
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
vậy x=15. k cho mình nha
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{45-41}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+\frac{17}{13.17}-\frac{13}{13.17}+...+\frac{45}{41.45}-\frac{41}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{45}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{21}{45}\)
\(\Rightarrow\frac{21}{3x}=\frac{21}{45}\)
\(\Rightarrow3x=45\)
\(\Rightarrow x=15\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}\)
\(\Leftrightarrow x=\frac{7.45}{21}=15\)
a, \(x-\frac{8}{9}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{8}{9}\)
\(\Leftrightarrow x=\frac{11}{9}\)
b, \(\frac{-4}{5}-\frac{8}{15}=\frac{-1}{3}-x\)
\(\Leftrightarrow\frac{-4}{3}=\frac{-1}{3}-x\)
\(\Leftrightarrow x=1\)
c, \(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)
Đặt \(A=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\)
\(A=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(A=\frac{1}{5}-\frac{1}{45}=\frac{8}{45}\)
Thay A vào phép tính
\(\Rightarrow x+\frac{8}{45}=\frac{-37}{45}\)
\(\Rightarrow x=-1\)
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{5}-\frac{1}{16}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2.\frac{3}{16}]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=2008\)
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Rightarrow x=15\)