K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

a, \(x-\frac{8}{9}=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{3}+\frac{8}{9}\)

\(\Leftrightarrow x=\frac{11}{9}\)

b, \(\frac{-4}{5}-\frac{8}{15}=\frac{-1}{3}-x\)

\(\Leftrightarrow\frac{-4}{3}=\frac{-1}{3}-x\)

\(\Leftrightarrow x=1\)

28 tháng 2 2019

c, \(x+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

Đặt \(A=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\)

\(A=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)

\(A=\frac{1}{5}-\frac{1}{45}=\frac{8}{45}\)

Thay A vào phép tính

\(\Rightarrow x+\frac{8}{45}=\frac{-37}{45}\)

\(\Rightarrow x=-1\)

17 tháng 9 2021

\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{5}-\frac{1}{16}\right)]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}-[2.\frac{3}{16}]=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2008}=1\)

\(\Rightarrow x=2008\)

17 tháng 9 2021

\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\Rightarrow\frac{7}{x}=\frac{21}{45}\)

\(\Rightarrow x=15\)

23 tháng 3 2017

\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{-37}{45}\)

\(x+4\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{4}{13.17}+...+\frac{1}{41.45}\right)=\frac{-37}{45}\)

\(x+4.\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{-37}{45}\)

\(x+1\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{-37}{45}\)

\(x+\frac{8}{45}=\frac{-37}{45}\)

\(x=\frac{-37}{45}-\frac{8}{45}\)

\(x=\frac{-45}{45}=-1\)

23 tháng 3 2017

LÀ 4,23 

7 tháng 4 2015

Theo đề bài ta có

x+1/5-1/9+1/9-1/13+.........+1/41-1/45=-37/45

x+(1/5-1/45)=-37/45

x+8/45=-37/45

x=-37/45 - 8/45

x=-45/45

x=-1

14 tháng 4 2017

Theo bài ra ta có:

x1/5-1/9+1/9-1/13+...+1/41-1/45=-37/45

x+8/45=-37/45

x=-45/45

x=-1/1

x=-1

4 tháng 8 2020

Ta có \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)(đk : \(x\ne0\))

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

=> \(\frac{7}{x}=\frac{7}{15}\)

=> x = 15 (tm)

b) \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

=> \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)

=> \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

=> \(\frac{1}{3}-\frac{1}{n+3}=\frac{10}{31}\)

=> \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

=> 2x = 90

=> x = 45 

18 tháng 3 2018

x+1/5-1/45 = -37/45

x+8/45        = -37/45

x               = -37/45-8/45

x                = -1

14 tháng 4 2016

bài 1

\(2A=\left(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{99\cdot101}\right)\cdot2\)

\(=5\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\right)\)

\(=5\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=5\left(1-\frac{1}{101}\right)\)

\(=5\cdot\frac{100}{101}\)

\(=\frac{500}{101}\Rightarrow A=\frac{500}{101}:2=\frac{250}{101}\)

bài 2:

\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=-\frac{37}{45}\)

\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=-\frac{37}{45}\)

\(x+\frac{8}{45}=-\frac{37}{45}\)

\(x=-\frac{37}{45}-\frac{8}{45}\)

\(x=\frac{-45}{45}=-1\)

12 tháng 7 2015

a,\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}=\frac{21}{45}\)

\(\frac{7}{x}=\frac{7}{15}\)

=> x = 15


b,\(\frac{x}{2008}-\left(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+....+\frac{2}{240}\right)=\frac{5}{8}\)

\(\frac{x}{2008}-2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)=\frac{5}{8}\)

\(\frac{x}{2008}-2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{15}-\frac{1}{16}\right)=\frac{5}{8}\)

\(\frac{x}{2008}-2\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)

\(\frac{x}{2008}-2.\frac{3}{16}=\frac{5}{8}\)

\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)

\(\frac{x}{2008}=\frac{5}{8}+\frac{3}{8}=1=\frac{2008}{2008}\)

=> x = 2008