Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+4x-5=0
<=> x2-5x+x-5=0
<=> x(x-5)+(x-5)=0
<=> (x-5)(x+1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
a) \(x^2-2xy+y^2-xz+yz\)
= \(\left(x-y\right)^2-z\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y-z\right)\)
b) \(x^3+9x^2-4x-36\)
= \(x^3-2x^2+11x^2-22x+18x-36\)
= \(x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\)
= \(\left(x-2\right)\left(x^2+11x+18\right)\)
= \(\left(x-2\right)\left(x^2+2x+9x+18\right)\)
= \(\left(x-2\right)\left(x+2\right)\left(x+9\right)\)
Chuc ban hoc tot
\(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-6\right)\left(x-2\right)=0\)
\(\Leftrightarrow x=\left\{1;-1;6;2\right\}\)
\(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(7x^3-7x^2\right)+\left(4x^2-4x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\)x - 1 =0 ; x + 1 = 0 ; x - 2 =0 hoặc x - 6 = 0
\(\Leftrightarrow\)x = 1 ; x = -1 ; x = 2 ; x=6
Ta có : \(\frac{x^2+4x+6}{x^2+2x+3}=\frac{x^2+2.x.2+4+2}{x^2+2x+1+2}=\frac{\left(x+2\right)^2+2}{\left(x+1\right)^2+2}\)
Mà : (x + 2)2 và (x + 1)2 \(\ge0\forall x\in R\)
Nên : (x + 2)2 + 2 và (x + 1)2 + 2 \(\ge2\forall x\in R\)
Suy ra GTNN của : (x + 2)2 + 2 và (x + 1)2 + 2 là 2
Mà : x ko thể nhận đồng thời 2 giá trị
Do đó : GTNN của (x + 2)2 + 2 là 3 khi x = 1 và (x + 1)2 + 2 là 2 khi x = 1
Vậy GTNN của \(\frac{x^2+4x+6}{x^2+2x+3}\) là : \(\frac{3}{2}\)
=>x(4x2-8x+4)=0
x(4x2-4x-4x+4)=0
x[4x(x-4)-4(x-4)]=0
x.4.(x-4)(x-1)=0
=>x=0
x=4
x=1
Nguyễn Việt Quang sai rồi nha bạn. Thay x = 4 vào biểu thức xem có được = VP không?
\(4x^3-8x^2+4x=0\)
\(\Leftrightarrow4x^3-4x^2-4x^2+4x=0\)
\(\Leftrightarrow\left(4x^3-4x^2\right)-\left(4x^2-4x\right)=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-4x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-4x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\4x^2-4x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4\left(x^2-x\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x^2-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}}\)