K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

A=|4x-1/4|+2016

Ta có: |4x-1/4|>=0

=>|4x-1/4|+2016>=2016 Hay A>=2016

Nên giá trị nhỏ nhất của A là 2016 khi

4x-1/4=0

4x=0+1/4

4x=1/4

x=1/4:4

x=1/16

Vậy GTNN của A là 2016 khi x=1/16

B=2014-|3x-1/5|

Ta có: |3x-1/5|>=0

2014-|3x-1/5|<=2014 hay B<=2014

Nên GTLN của B là 2014 khi:

3x-1/5=0

3x=0+1/5

3x=1/5

x=1/5:3

x=1/15

Vậy GTNN của B là 2014 khi x=1/15

29 tháng 6 2015

GTTĐ luôn >= 0 

Áp dụng ta có

A = l 4x -1/4l + 2016 Nhỏ hơn bằng 0 + 2014 = 2014 

Vậy GTNN của A là 2014 khi 4x - 1/4 = 0 => x = ...

TA có

B = 2014 - l 3x - 1/5l lớn hơn bằng 2014 - 0 = 2014

Vậy GTLN là 2014 khi 3x - 1/5 = 0

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

5 tháng 9 2016

bạn cho nhìu ứa nên mik trả lời vài câu nha:

1.

A. Vì |x- 1/2| >=0       =>       Amin =0   

B.Vì |x + 3/4| >=0   =>      B >= 2 (cộng 2 mà)   =>       Bmin =2     khi   x+ 3/4 =0 ....

các câu còn lại làm tương tự nhé

13 tháng 10 2016

Hi bạn... làm quen nha #hun#han

\(3\left|2x+5\right|-4=1\)

\(\Rightarrow\hept{\begin{cases}3\left(2x+5\right)-4=1\\3\left(5-2x\right)-4=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6x+15-4=1\\15-6x-4=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6x+11=1\\11-6x=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{6}\\x=\frac{10}{6}\end{cases}}\)

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng