Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ấn cái chỗ chữ M nó bị ngược sang trái ý, đầu tiên ở phia trên chỗ đăng câu hỏi ý! Rồi đăng lại câu hỏi nhé! Chứ ghi vậy không hiểu rõ đề lắm! :)
Ta có :\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
<=> \(\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\right)=\left(x-105\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)
<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
<=> x - 105 = 0 (Vì \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\))
<=> x = 105
Vậy nghiệm phương trình là x = 105
\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)
\(E_{min}=-9\) khi \(x=2\)
\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)
=>MIN(E)=-9
dấu '=' xảy ra <=>x-2=0=>x=2
vậy MIN (E)=-9 khi x=2
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
\(x\left(x+1\right)\left(x^2+x-5\right)-6\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)-6\)
\(=\left(x^2+x^2\right)^2-5\left(x^2+x\right)-6\)
\(=\left(x^2+x\right)^2+\left(x^2+x\right)-6\left(x^2+x\right)-6\)
\(=\left(x^2+x\right)\left(x^2+x+1\right)-6\left(x^2+x+1\right)\)
\(=\left(x^2+x-6\right)\left(x^2+x+1\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
Bài 2:
f: \(x^2+1=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x^2-1}=\dfrac{x^4-1}{x^2-1}\)
\(\dfrac{x^4}{x^2-1}=\dfrac{x^4}{x^2-1}\)
a) \(2\left(x+3\right)=4x-\left(2+x\right)\)
\(2x+6=3x-2\)
\(-x=-8\)=>x=8
b) \(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đk x khác 2 và -2
\(\dfrac{\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\)
=>\(x-2-5x-10=2x-3\)
\(-6x=9=>x=\dfrac{3}{2}tm\)
Câu 1: D
Câu 2: A
Câu 3: B
Câu 4: A
Câu 5: C
Câu 6:B
Câu 7: A
Câu 8: C
a,Ta có B = x2-x+x = x2
Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0
Vậy Min B = 0 tại x = 0
b,Ta có 4x-x2+3 = -x2+4x-4+7
= -(x2-4x+4)+7
= -(x-2)2+7
Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7
Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy Max c = 7 tại x = 2.
c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4
= -(x-1)2-x2-4
Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0
x2 ≥ 0 => -x2 ≤ 0
Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0
-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5
-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5
Vậy Max D = -5 tại x = 0 hoặc x = 1
Ta có: 7x(x-5)-(x-5)=0
⇔(x-5)(7x-1)=0
⇔\(\left[{}\begin{matrix}x-5=0\\7x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\7x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{1}{7}\right\}\)