Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
\(|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2012|x - 2013| \ge 0 \forall x \\\Leftrightarrow 2011 + 2012 |x - 2013| \ge 2011 \forall x \)
Dấu "=" xảy ra khi
\(|x - 2013| = 0 \\\Leftrightarrow x - 2013 =0 \\\Leftrightarrow x = 2013\)
Vậy \(Min_A = 2011 \) khi\(x = 2013\)
\(\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right):\dfrac{456}{123}\)
\(=\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\cdot\dfrac{123}{456}\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\right]\)
\(=\dfrac{123}{456}\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}-\dfrac{2009}{2010}+\dfrac{1}{2011}\right)\)
\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}+\dfrac{1}{2011}\right)-\left(\dfrac{2011}{2010}+\dfrac{2009}{2010}\right)\right]\)
\(=\dfrac{123}{456}\left(1-2\right)\)
\(=-\dfrac{123}{456}\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\forall x\in R\)
Dấu "=" xảy ra khi\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
\(B=-2\left(x-3\right)^2-\dfrac{7}{11}\left|3y+7\right|-2011\ge-2011\forall x,y\in R\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\3y+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-\dfrac{7}{3}\end{matrix}\right.\)
\(C=\left|2x+1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}2x+1=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
\(!x^2-x!\le x+k\) có 2011 nghiệm nguyên (*)
Hiển nhiên với 0<x<1 loại do x không nguyên
Vậy : \(\left[\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\) =>!x^2-x!=x^2-x
\(\Leftrightarrow x^2-x\le x+k\Leftrightarrow x^2-2x+1\le\left(k-1\right)\Leftrightarrow\left(x-1\right)^2\le k-1\)
Nếu k<1 vô nghiệm=> k>=1
\(1-\sqrt{k-1}\le x\le1+\sqrt{k-1}\)
Từ -1004 đến 1006 có 2011 số nguyên
Theo điều kiên (**)=> \(\sqrt{k-1}=\frac{2011-1}{2}=1005\)
có 2011 nghiệm nguyên x
\(1005\le\sqrt{k-1}< 1006\Rightarrow1005^2+1\le k< 1006^2+1\)
Áp dụng BĐT Cauchy ta có:
\(M=4x^2-3x+\dfrac{1}{4x}+2011\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)
= \(\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)
\(\ge0+2\sqrt{x.\dfrac{1}{4x}}+2010\) = \(1+2010=2011\)
=> Dấu = xảy ra <=> \(2x=1\) => \(x=\dfrac{1}{2}\)
Vậy ........................................
=>\(-\left|x-2011\right|+\left(x-2011\right)^2=0\)
\(\Leftrightarrow\left|x-2011\right|\left(\left|x-2011\right|-1\right)=0\)
\(\Leftrightarrow x\in\left\{2011;2012;2010\right\}\)