Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
\(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
Thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow3x-2\ge0\Rightarrow x\ge\frac{2}{3}\)
\(\left(\left|2x+1\right|\right)^2=\left(3x-2\right)^2\)
\(\Rightarrow4x^2+4x+1=9x^2-12x+4\)
\(\Rightarrow-5x^2+16x-3=0\)
\(\Rightarrow15x-3-5x^2+x=0\)
\(\Rightarrow3\left(5x-1\right)-x\left(5x-1\right)=0\)
\(\Rightarrow\left(3-x\right)\left(5x-1\right)=0\)
\(\Rightarrow x=3\left(x\ge\frac{2}{3}\right)\)
\(3x-!2x+1!=2\Leftrightarrow3x-2=!2x+1!\) (1)
Hiểu nhiên VP>=0 vậy VT cũng phải >=0
Vậy: \(3x-2\ge0\Rightarrow x\ge\frac{2}{3}\) khi \(x\ge\rightarrow2x+1>0\Rightarrow!2x+1!=2x+1\) (*)
Từ lập luận (*) (1)\(\Leftrightarrow3x-2=2x+1\Leftrightarrow\left(3x-2x\right)=1+2\Rightarrow x=3\) thủa mãn (*) vậy x=3 là nghiệm duy nhất
Ta có:
A =2100-299+298-297+.....+22-21
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Vậy A=\(\frac{2^{101}-2}{3}\).
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
\(\frac{64}{\left(-2\right)^x}=\left(-16\right)^2:4^3\)
<=> \(\frac{64}{\left(-2\right)^x}=4\)
<=> \(\frac{64}{\left(-2\right)^x}=\frac{64}{16}\)
<=> (-2)x = 16
<=> x = 4
!)
=> x(x - 1)=0
=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy đa thức có nghiệm là x=0 ; x=1
1) \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
d)\(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)
\(7\left(x-2004\right)^2=23-y^2\)
\(\Rightarrow7\left(x-2004\right)^2+y^2=23\left(1\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2004\right)^2\le\frac{23}{7}\) suy ra \(\left[\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)
*)Xét \(\left(x-2004\right)^2=0\) thay vào \((1)\) ta có: \(y^2=23\) (loại)
*)Xét \((x-2004)^2=1\) thay vào \((1)\) ta có \(y^2=16\)
Từ đó ta tìm được \(\left[\begin{matrix}\left\{\begin{matrix}x=2005\\y=4\end{matrix}\right.\\\left\{\begin{matrix}x=2003\\y=4\end{matrix}\right.\end{matrix}\right.\)
\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\)
(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)
(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)
Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)
Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)
\(\Rightarrow A=1+2+2^2+...+2^{40}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{41}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{41}\right)-\left(1+2+2^2+...+2^{40}\right)\)
\(\Rightarrow A=2^{41}-1\)
Vì \(2^{41}-1< 2^{41}\) nên A < B
Vậy A < B
\(\frac{1}{9}.27^x=3^x\)
\(\Rightarrow\frac{1}{9}=\frac{3^x}{27^x}=\left(\frac{3}{27}\right)^x\)
\(\Rightarrow\left(\frac{1}{9}\right)^x=\left(\frac{1}{9}\right)^1\)
=> x = 1
Vậy x = 1
thanh cìu bạn nhìu!!