Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2.( 1/2-1/3+1/3-1/4+....+1/(x-1)-1/x+1)=3/2
1+2.(1/2-1/x+1)=3/2
1-2/x+1=3/2-1
tự tính
Bài 2:
\(M=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2008.2009}\)
\(\Rightarrow M=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2009-2008}{2008.2009}\)
\(\Rightarrow M=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2008}-\frac{1}{2009}=\frac{1}{2}-\frac{1}{2009}\)
Bài 1:
Ta có: \(\frac{x}{2}+\frac{x}{3}=x\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{6}x=\frac{1}{4}\Rightarrow x=\frac{3}{10}\)
ta phân tích thành
\(\frac{1}{1\cdot2}\)x\(\frac{2\cdot2}{2\cdot3}\)x\(\frac{3\cdot3}{3\cdot4}\)x......x\(\frac{5\cdot5}{5\cdot6}\)x\(\frac{6\cdot6}{6\cdot7}\)
Tử nhân tử mẫu nhân mẫu ta có
1x2x2x3x3x.........x5x5x6x6
1x2x2x3x3x4x....x5x6x6x7
Rút gọn ta có
\(\frac{1}{7}\)
Vậy A=\(\frac{1}{7}\)
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(A=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{440}\)
\(A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{20.22}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{22}\right)=2.\frac{5}{11}=\frac{10}{11}\)
\(B=\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot\left(1-\frac{1}{16}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{9.11}{10.10}\)
\(B=\frac{1\cdot2\cdot3\cdot....\cdot9}{2\cdot3\cdot4\cdot....\cdot10}\cdot\frac{3\cdot4\cdot5\cdot...\cdot11}{2\cdot3\cdot4\cdot....\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)