Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)
Do \(x;y;z>0\) và \(x^2+y^2+z^2=3\)
Nên \(0< x;y;z< \sqrt{3}\)
Ta có: \(\frac{1}{x+y+z}\le\frac{1}{9x}+\frac{1}{9y}+\frac{1}{9z}\)
\(\Rightarrow A\ge x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}-\frac{1}{9x}-\frac{1}{9y}-\frac{1}{9z}\)
\(\Leftrightarrow A\ge x+\frac{8}{9x}+y+\frac{8}{9y}+z+\frac{8}{9z}\)
Ta chứng minh: \(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\)
\(\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge\)
Do đó \(A\ge\frac{x^2+y^2+z^2+99}{18}=\frac{102}{18}=\frac{17}{3}\)
Dấu = xảy ra khi x=y=z=1
Dòng thứ 3 từ dưới lên là \(\left(x-1\right)^2\left(16-x\right)\ge0\)
Đúng do \(0< x< \sqrt{3}< 16\)
\(x^2+y^2+z^2+xy+yz+xz\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2xz\right)-\left(xy+yz+xz\right)\)
\(=\left(x+y+z\right)^2-\left(xy+yz+xz\right)\)
Mặt khác: \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2-\left(xy+yz+xz\right)\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}=9-3=6\)
"=" khi a=b=c=1
a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)
Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)
Tương tự: \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)
\(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)
Suy ra: \(A+\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)
\(=2.\left(x+y+z\right)\)
Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)
Mình có sai chỗ nào không nhỉ?
Ta có: x+5y=21 và 2x+3z=51
=> x+5y+2x+3z=21+51
<=> 3x+3y+3z+2y=72
<=> 3(x+y+z)=72-2y
=> \(x+y+z=\frac{72-2y}{3}=24-\frac{2y}{3}\)
=> \(A=\left(x+y+z\right)^2=\left(24-\frac{2y}{3}\right)^2\)
Do \(y\ge0\)=> Để A đạt GTLN thì y đạt GTNN
Mà GTNN của y là y=0 => \(A_{max}=\left(24-\frac{2y}{3}\right)^2=\left(24-\frac{2}{3}.0\right)^2=24^2=576\)
Đáp số: Amax=576
\(x+y+z=0\) => \(x+y=-z\) => \(\left(x+y\right)^2=z^2\)
=> \(x^2+2xy+y^2=z^2\)
=> \(z^2-x^2-y^2=2xy\)
Tương tự:
\(x^2-y^2-z^2=2yz\)
\(y^2-z^2-x^2=2zx\)
Thay vào tính M ta có:
\(M=\frac{x^2}{2yz}+\frac{y^2}{2zx}+\frac{z^2}{2xy}\)
\(=\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\) (*)
Ta lại có: x + y + z = 0
=> x + y = -z => \(\left(x+y\right)^3=-z^3\)
=> \(x^3+3x^2y+3xy^2+y^3=-z^3\)
=> \(x^3+y^3+z^3=-3x^2y-3xy^2\)
=> \(x^3+y^3+z^3=-3xy\left(x+y\right)\)
=> \(x^3+y^3+z^3=-3xy\left(-z\right)\) (vì x + y = -z)
=> \(x^3+y^3+z^3=3xyz\)
Thay vào (*) ta có:
\(M=\frac{1}{2}\frac{3xyz}{xyz}=\frac{3}{2}\)