Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$21+51 = x+5y+(2x+3z)=3x+5y+3z$
$\Rightarrow 72=3(x+y+z)+2y\geq 3(x+y+z)$
$\Rightarrow x+y+z\leq 24$
Vậy $x+y+z$ có GTLN là $24$
Giá trị này đạt tại $(x,y,z)=(21,0,3)$
We have:
\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)
Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)
Dau '=' xay ra khi \(x=y=z=1\)
Cho \(x;y;z\ge0\)và \(xy+yz+zx=1\)Tìm GTLN
\(Q=9\left(x^2+y^2+z^2\right)-4\left(x^3+y^3+z^3\right)\)
Ta có: \(\left(x+z\right)\left(y+z\right)=1\)
\(\Rightarrow\left(x+z\right)^2\left(y+z\right)^2=1\)
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(y+z\right)^2}+\dfrac{\left(x+z\right)^2\left(y+z\right)^2}{\left(z+x\right)^2}\)
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2+\left(y+z\right)^2\)
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z\right)^2-2\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2+2\) (Vì: (x+z)(y+z)=1 =>2(x+z)(y+z)=2 )
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x+z-y-z\right)^2+2\)
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\)
Áp dụng bất đẳng thức Cauchy, ta có :
\(\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2\ge2\sqrt{\dfrac{1}{\left(x-y\right)^2}\cdot\left(x-y\right)^2}=2\cdot1=2\)
\(\Rightarrow P=\dfrac{1}{\left(x-y\right)^2}+\left(x-y\right)^2+2\ge2+2=4\)
Vậy \(MinP=4\) khi \(x-y=1\); \(y+z=\dfrac{\sqrt{5}-1}{2}\); \(x+z=\dfrac{2}{\sqrt{5}-1}\)
Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Đpcm
Trả lời
Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1
Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
ĐPCM
Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)
\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)
Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)
\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)
Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)
\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)
( mình đang vội nên làm hơi tắt mong bạn thông cảm )
Ta có: x+5y=21 và 2x+3z=51
=> x+5y+2x+3z=21+51
<=> 3x+3y+3z+2y=72
<=> 3(x+y+z)=72-2y
=> \(x+y+z=\frac{72-2y}{3}=24-\frac{2y}{3}\)
=> \(A=\left(x+y+z\right)^2=\left(24-\frac{2y}{3}\right)^2\)
Do \(y\ge0\)=> Để A đạt GTLN thì y đạt GTNN
Mà GTNN của y là y=0 => \(A_{max}=\left(24-\frac{2y}{3}\right)^2=\left(24-\frac{2}{3}.0\right)^2=24^2=576\)
Đáp số: Amax=576