K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

drthe46he46he46

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1

27 tháng 3 2020

Áp dụng bất đẳng thức AM-GM ta có:

\(x^5+\frac{1}{x}+1+1\ge4\sqrt[4]{x^5.\frac{1}{x}}=4x\)

Chứng minh tương tự: \(y^5+\frac{1}{y}+1+1\ge4\sqrt[4]{y^5.\frac{1}{y}}=4y\)

\(z^5+\frac{1}{z}+1+1\ge4\sqrt[4]{z^5.\frac{1}{z}}=4z\)

\(\Rightarrow T+6\ge4\left(x+y+z\right)=12\)

\(\Leftrightarrow T\ge6\)

Dấu " = " xảy ra <=> x=y=z=1