Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Rightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có : \(\left(x-1\right)^2\ge0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(2y-3\right)^2\ge0\Rightarrow2y-3=0\Rightarrow2y=3\Rightarrow y=\frac{3}{2}\)
\(\left(z+2\right)^2\ge0\Rightarrow z+2=0\Rightarrow z=-2\)
\(=\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow x=1;y=\frac{3}{2};z=-2\)
Ta có:
x2+4y2+z2-2x-12y-4z-14=0
x2-2x+1+z2-4z+4+4y2-12y+9=0
(x-1)2+(z-2)2+(2y-3)2=0
Tổng 3 số không âm bằng 0
<=> x-1=0 và z-2=0 và 2y-3=0
<=> x=1 và z=2 và y=3/2
Bài 1:
x3+y3=152=> (x+y)(x2-xy+y2)=152
Mà x2-xy+y2=19
=> 19(x+y)=152=> x+y=8
Ta cũng có x-y=2
=> x=5;y=3
Bài 2:
x2+4y2+z2=2x+12y-4z-14
=> x2+4y2+z2-2x-12y+4z+14=0
=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0
=> (x+1)2+(2y-3)2+(z+2)2=0
=> (x+1)2=(2y-3)2=(z+2)2=0
=> x=-1;y=3/2;z=-2
Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)
x2+2x+1+y2-4y+4+z2+6z+9=0
(x+1)2+(y-2)2+(z+3)2=0
(x+1)2 \(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)
mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha
từ đó tính đc x,y,z
Ta có : x2 + 4y2 - 2x + 4y + 2 = 0
<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0
<=> (x - 1)2 + (2x + 1)2 = 0
Mà : \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2x+1\right)^2\ge0\forall x\)
Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$