Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
ta có:x.y.y.z.x.z=\(\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{27}{10}=\dfrac{81}{100}\)
=>(x.y.z)2= \(\left(\dfrac{9}{10}\right)^2=\left(\dfrac{-9}{10}\right)^2\)
Nếu x.y.z=\(\dfrac{9}{10}\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{3}\\z=\dfrac{9}{5}\end{matrix}\right.\)
Nếu x.y.z=\(\dfrac{-9}{10}\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-3}{2}\\y=\dfrac{-1}{3}\\z=\dfrac{-9}{5}\end{matrix}\right.\)
\(A=\dfrac{x}{xy+x+1}+\dfrac{y}{y+1+yz}+\dfrac{z}{1+z+xz}\)
\(=\dfrac{x}{xy+x+xyz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+z}\)
\(=\dfrac{x}{x\left(y+1+yz\right)}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1}{y+1+yz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)
\(=\dfrac{1+y+yz}{y+1+yz}=1.\)
Đặt biểu thức trên là A, thay xyz = 2018, ta dược :
\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)
\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)
⇒ĐPCM
Please help me!!!!!!!!!!!
I feel this exercise is difficult!!!!!!
Đặt \(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}=k\)
⇔\(\left\{{}\begin{matrix}x=10k\\y=14k\\z=15k\end{matrix}\right.\)
Thay x = 10k; y = 14k và z = 15k vào xy + yz + xz = 2000 ta được :
140.k.k + 210.k.k + 150.k.k = 2000
⇔k.k .( 140 + 210 + 150 ) = 2000
\(\Leftrightarrow k^2\cdot500=2000\\ \Leftrightarrow k^2=4\\ \Leftrightarrow\left\{{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
* Với k = 2, \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=28\\z=30\end{matrix}\right.\)
*Với k = -2, \(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-28\\z=-30\end{matrix}\right.\)
Vậy ...................