K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Đặt biểu thức trên là A, thay xyz = 2018, ta dược :

\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)

\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)

\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)

⇒ĐPCM

3 tháng 2 2018

Please help me!!!!!!!!!!!khocroikhocroikhocroi

I feel this exercise is difficult!!!!!!bucminh

23 tháng 3 2018

x+y+z hay là xyz hả bạn

24 tháng 3 2018

x*y*z =2018 nha

2 tháng 3 2017

Cách 1 : Lập từng TH :

TH1 : Nếu x , y , z đều dương

suy ra ko thỏa mãn do xz = -9/13 (âm ) (S)

TH2 : Nếu x , y dương , z âm

suy ra ko thỏa mãn do yz = 3/7 ( dương ) (S)

TH3 : x âm , y,z dương

suy ra không thỏa mãn do xy = 2/5 (dương) (S)

TH4 : x , y , z đều am

suy ra không thỏa mãn do xz = -9/13 ( âm ) (S)

TH5 : x,y âm z dương

suy ra không thỏa mãn do yz = 3/7 ( dương ) (S)

Từ 5 trường hợp trên =) ko có số bố (x,y,z) thỏa mãn

Cách 2 :

Theo bài ra , ta có :

\(xy=\dfrac{2}{5},yz=\dfrac{3}{7},xz=-\dfrac{9}{13}\)

\(\Rightarrow xy.yz.xz=\dfrac{2}{5}\times\dfrac{3}{7}\times-\dfrac{9}{13}=-\dfrac{54}{455}\)

\(\Rightarrow\left(xyz\right)^2=-\dfrac{54}{455}\)

\(\Rightarrow xyz=\sqrt{\left(-\dfrac{54}{455}\right)}\)(Không xác định được vì một số bình phương không thể âm

Suy ra không có bộ (x,y,z) nào thỏa mãn các đk trên

Chúc bạn hok tốt =))ok

9 tháng 8 2017

Câu hỏi của jgfhjudfhuvfghdf |Học trực tuyến

20 tháng 11 2017

Ta có: \(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+1}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy^2+xy+x}+\dfrac{xyz}{x^2yz+xyz+xy}\)

\(=\dfrac{x}{xy+x+1}+\dfrac{xy}{xy+x+1}+\dfrac{1}{xy+x+1}\)( vì \(xyz=1\))

\(=\dfrac{x+xy+1}{xy+x+1}=1\)

Chúc bạn học tốt!

15 tháng 4 2017

\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)

\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)

\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)

Vậy...

15 tháng 4 2017

êu , sao \(\dfrac{1}{xy+x+1}\)+... lại bằng \(\dfrac{xyz}{xy+z+zxy}\)+... vậy ?

2 tháng 4 2017

\(A=\dfrac{x}{xy+x+1}+\dfrac{y}{y+1+yz}+\dfrac{z}{1+z+xz}\)

\(=\dfrac{x}{xy+x+xyz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+z}\)

\(=\dfrac{x}{x\left(y+1+yz\right)}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)

\(=\dfrac{1}{y+1+yz}+\dfrac{y}{y+1+yz}+\dfrac{yz}{1+yz+y}\)

\(=\dfrac{1+y+yz}{y+1+yz}=1.\)

7 tháng 9 2017

Cái đề nó hơi rối rối nhỉ nhỉ vô là mù cả con mắt

\(\dfrac{x^4y^3}{z}=2018\left(1\right)\\ \dfrac{x^3z^4}{y}=\dfrac{1}{2018}\left(2\right)\\ \dfrac{y^4z^3}{x}=729\left(3\right)\)

ĐK: \(x,y,z\ne0\)

Nhân vế với \(VT=\dfrac{x^4y^3}{z}.\dfrac{x^3z^4}{y}.\dfrac{y^4z^3}{x}=\dfrac{x^{4+3}y^{4+3}z^{4+3}}{xyz}=\dfrac{x^7y^7z^7}{xyz}=\left(xyz\right)^6\)

\(VP=2018.\dfrac{1}{2018}.729=729=3^6\)

\(\Rightarrow\left(xyz\right)^6=3^6\)

\(\Rightarrow P=x.y.z=\pm3\)

KL:

\(P=\pm3\)

9 tháng 9 2017

Rối bời

6 tháng 8 2017

Áp dụng TCDTSBN ta có:

\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)

\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)

6 tháng 8 2017

Hình như là sai đề bn ak!