K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x^2+5y^2-4xy+6y+9=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y=2.\left(-3\right)=-6\\y=-3\end{matrix}\right.\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\)

20 tháng 11 2017

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
Thực hiện phép tínha) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 ...
Đọc tiếp

Thực hiện phép tính
a) \(\frac{\text{x + 9}}{x^2 - 9}-\frac{\text{3}}{\text{x^2 + 3x}}\)

b) \(\frac{\text{3x + 5 }}{\text{x^2 - 5x }}+\frac{\text{ 25 - x }}{\text{25 - 5x }}\)

c) \(\frac{\text{3 }}{\text{2x }}+\frac{\text{3x - 3 }}{\text{2x - 1 }}+\frac{ 2x^2 + 1 }{\text{4x^2 - 2x }}\)

d) \(\frac{\text{1}}{\text{3x - 2 }}-\frac{1}{\text{3x + 2 }}- \frac{\text{3x - 6}}{\text{4 - 9x^2}}\)
e) \(\frac{\text{18 }}{\text{(x - 3)(x^2 - 9) }}-\frac{\text{3 }}{\text{x^2 - 6x + 9 }}-\frac{\text{x}}{\text{x^2 - 9}}\)
g) \(\frac{\text{x + 2 }}{\text{x + 3 }}-\frac{\text{5 }}{\text{x^2 + x - 6 }}+\frac{\text{1}}{\text{2 - x}}\)
h) \(\frac{\text{4x }}{\text{x + 2 }}-\frac{\text{3x }}{\text{x - 2 }}+\frac{\text{12x}}{\text{x^2 - 4}}\)
i) \(\frac{\text{ x + 1 }}{\text{ x - 1 }}-\frac{\text{ x - 1 }}{\text{ x + 1 }}-\frac{\text{4}}{\text{1 - x^2}}\)
k) \(\frac{\text{ 3x + 21 }}{\text{ x^2 - 9 }}+\frac{\text{2 }}{\text{x + 3 }}-\frac{\text{3}}{\text{x - 3}}\)

 

0
18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

3 tháng 10 2019

\(B=x^3+3x^2+3x^2y+3xy^2+y^3+3y^2+6xy+3x+3y+2019\)

\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2019\)

\(=\left[\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+1\right]+2018\)

\(=\left(x+y-1\right)^3+2018\)

\(x+y=101\)

\(B=\left(101-1\right)^3+2018=1002018\)

3 tháng 10 2019

Đang 3x2+3y2 sao lại ra -3(x+y)2 ?? Phải là +3(x2+y2) chứ :v Không nhớ hằng đẳng thức 1 và 3 à :v với cả 6xy đâu?

6 tháng 8 2017

\(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2xy+2x+2yz=0\)

\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)

Có: 

\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)

15 tháng 3 2020

\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)

\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)

1 : Áp dụng 3 hằng đẳng thức đầu

2 : Tách ra

2 tháng 7 2017

Điền cái gì vào

2 tháng 7 2017

Điền cho ra hằng đẳng thức (x + y)2 và ( x-y )2 à