Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu vào phần thống kê câu trả lời của mk ấy, ngay câu đầu tiên
tham khảo nha: Câu hỏi của Nguyễn Thị Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Ta có: x + y + z = 0
=> x = -y - z
=> x2 = (-y - z)2
=> x2 = y2 + 2yz + z2
=> x2 - y2 - z2 = 2yz
CMTT: y2 = x2 + 2xz + z2 => y2 - z2 - x2 = 2xz
z2 = x2 + 2xy + y2 => z2 - x2 - y2 = 2xy
Khi đó, ta có:M = \(\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\)
M = \(\frac{x^3+y^3+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)\left(x^2+2xy+y^2\right)-3xy\left(x+y\right)+z^3}{2xyz}\)
M = \(\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
M = \(\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+x^2\right]-3xy\left(x+y\right)}{2xyz}\)(do x + y + z = 0)
M = \(\frac{-3xy.z}{2xyz}=-\frac{3}{2}\) (do x + y = -z)
Sửa lại kq M = 3/2 (thay dòng cuối) (-3xy.z --> -3xy(-z)) n/b
Áp dụng bđt côsi cho 2 số dương lần lượt ta có :
\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)
\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)
\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)
Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)
Dấu = xảy ra khi : \(1=\frac{y}{x}\)=> x=y và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z
=> x=y=z
Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)
Vì a, b, c khác 0 nên dấu bằng xảy ra khi \(x=y=z=0\)
\(\Rightarrow M=x^{2016}+y^{2016}+z^{2016}=0^{2016}+0^{2016}+0^{2016}=0\)
\(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2xy+2x+2yz=0\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
Có:
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)