K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2024

a; \(\dfrac{x}{5}\) = \(\dfrac{y}{6}\)\(\dfrac{7}{8}\) = \(\dfrac{z}{7}\)\(x\) + y - z = 69

  z = \(\dfrac{7}{8}\). 7 = \(\dfrac{49}{8}\); Thay z = \(\dfrac{49}{8}\) vào biểu thức \(x\) + y  - z = 69 ta có:

\(x\) + y  - \(\dfrac{49}{8}\) = 69 ⇒ \(x\) + y  = 69 + \(\dfrac{49}{8}\) = \(\dfrac{601}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

           \(\dfrac{x}{5}\) = \(\dfrac{y}{6}\) = \(\dfrac{x+y}{5+6}\) = \(\dfrac{\dfrac{601}{8}}{11}\) = \(\dfrac{601}{88}\)

 \(x\) = \(\dfrac{601}{88}\) x 5 =  \(\dfrac{3005}{88}\); y = \(\dfrac{601}{88}\) x 6 = \(\dfrac{1803}{44}\)

Vậy (\(x\); y; z) = (\(\dfrac{3005}{88}\);\(\dfrac{1803}{44}\);\(\dfrac{49}{8}\))

 

 

18 tháng 1 2024

b; 2\(x\) = 3y; 5y = 7z; 3\(x\) + 5z + 7y  = 30

2\(x\)  = 3y ⇒ \(x\) = \(\dfrac{3}{2}\)y;5y = 7z ⇒ z = \(\dfrac{5}{7}\)y

thay \(x\) = \(\dfrac{3}{2}\)y; z = \(\dfrac{5}{7}\)y vào biểu thức 3\(x\) + 5z  + 7y  = 30 ta có:

3.\(\dfrac{3}{2}\)y + 5.\(\dfrac{5}{7}\)y + 7y  = 30

y.(3.\(\dfrac{3}{2}\) + 5.\(\dfrac{5}{7}\) + 7) = 30

 y.(\(\dfrac{9}{2}\) + \(\dfrac{25}{7}\) + 7) = 30

 y.\(\dfrac{211}{14}\) = 30

y         = 30 : \(\dfrac{211}{14}\)

y        = \(\dfrac{420}{211}\);  \(x\) = \(\dfrac{3}{2}\).\(\dfrac{420}{211}\) = \(\dfrac{630}{211}\); z = \(\dfrac{420}{211}\)\(\dfrac{5}{7}\) = \(\dfrac{300}{211}\)

Vậy... 

21 tháng 11 2017

Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)

Ta có: \(\dfrac{x}{4}=k\) \(\Rightarrow\) \(x=4k\) (1)

\(\dfrac{y}{5}=k\) \(\Rightarrow\) \(y=5k\) (2)

Mà theo đề bài ta có \(xy=80\)

Thế (1) và (2) vào: \(4k.5k=80\\\)

\(\Rightarrow20k^2=80\)

\(\Rightarrow k^2=80:20=4\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=2\) hoặc \(k=-2\)

Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}=2\)

\(\dfrac{x}{4}=2\Rightarrow x=2.4=8\)

\(\dfrac{y}{5}=2\Rightarrow x=2.5=10\)

\(\dfrac{x}{4}=\dfrac{y}{5}=-2\)

\(\dfrac{x}{4}=-2\Rightarrow x=\left(-2\right).4=-8\)

\(\dfrac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)

Vậy có 2 cặp \(\left(x,y\right)=\left(8,10\right);\left(-8,-10\right)\)

21 tháng 11 2017

a, Ta có: \(2x=3y;7z=5y\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{z}{5}=\dfrac{y}{7}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.21=42\\y=2.14=28\\z=2.10=20\end{matrix}\right.\)

Vậy \(x=42;y=28;z=20\)

b, Ta có: \(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow5x:y:3z=15:5:\left(-6\right)\)\(5x-y+3z=-16\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{-16}{4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4.3=-12\\y=-4.5=-20\\z=-4.\left(-2\right)=8\end{matrix}\right.\)

Vậy \(x=-12;y=-20;z=8\)

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

24 tháng 7 2017

mn ơi giúp nhé

27 tháng 10 2017

Giải:

a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}=\dfrac{2x+3y-5z}{14+12-15}=\dfrac{28}{14}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=2\\\dfrac{y}{5}=2\\\dfrac{z}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=10\\z=6\end{matrix}\right.\)

Vậy ...

b) Ta có: \(\left\{{}\begin{matrix}3x=2y\\7y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{y}{15}\\\dfrac{y}{15}=\dfrac{z}{21}\end{matrix}\right.\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-12+21}=\dfrac{32}{19}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{32}{19}\\\dfrac{y}{12}=\dfrac{32}{19}\\\dfrac{z}{21}=\dfrac{32}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{320}{19}\\y=\dfrac{384}{19}\\z=\dfrac{672}{19}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

27 tháng 10 2017

a) \(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}\)

Áp dụng t.c dãy tỉ số = nhau có:

\(\dfrac{2x}{14}=\dfrac{3y}{15}=\dfrac{5z}{15}=\dfrac{2x+3y-5z}{14+15-15}=2\)

Khi đó tìm x.

b) \(3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)

\(7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{15}=\dfrac{z}{21}\)

Khi đó \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

...

5 tháng 11 2017

a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2

\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6

\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8

\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10

vậy x=6,y=8,z=10

5 tháng 11 2017

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)

từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1

\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9

\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12

\(\dfrac{z}{16}\)=-1=>z=-1.16=-16

vậy...

8 tháng 11 2018

a) Đặt x/3 = y/4 = k ta có: x = 3k và y = 4k
=> x.y = 3k.4k = 12
> 12k² = 12 => k = -1; 1
=> x = 3; y = 4 hoặc x = -3; y = -4
b) Làm tương tự
c) Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
d) Làm tương tự c ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
e) Từ 2x = 3y => x/3 = y/2
Từ 5y = 7z => y/7 = z/5 (Quay về VD c,d)
f) Làm tương tự

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

29 tháng 10 2017

Câu 1 :

a. Theo đề bài ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}\)\(x+y=21\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=2.3=6\\\dfrac{y}{5}=3\Rightarrow y=3.5=15\end{matrix}\right.\)

Vậy..............

b. Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}2k\\3y\end{matrix}\right.\)

\(x.y=54\)

hay \(2k.3k=54\)

\(\Rightarrow6.k^2=54\)

\(\Rightarrow k^2=9=\left(\pm3\right)^2\)

Với \(k=3\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)

Với \(k=-3\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).3=-9\end{matrix}\right.\)

Vậy..............

c. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{12}{2}=6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=6\Rightarrow x=7.6=42\\\dfrac{y}{5}=6\Rightarrow y=5.6=40\end{matrix}\right.\)

Vậy............