Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x-1+5.3x-1=162
=>3x-1.6=162
=>3x-1=162:6
=>3x-1=27=33
=>x-1=3
=>x=4
\(2^{x+1}.3^y=12^x\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}.3^x}{2^{x+1}.3^y}=1\)
\(\Leftrightarrow2^{x-1}.3^{x-y}=1\)
Vì \(2^{x-1}\ge1,3^{x-y}\ge1\)mà đề yêu cầu giải dấu "=" xảy ra, khi đó:
\(\hept{\begin{cases}2^{x-1}=1\\3^{x-y}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c. \(3^{-1}\cdot3^x+5\cdot3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài làm:
Ta có: \(\left(\frac{2}{5}\right)^x>\left(\frac{5}{2}\right)^{-3}\cdot\left(-\frac{2}{5}\right)^2\)
\(\Leftrightarrow\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\Leftrightarrow\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
=> \(x\in N=\left\{x\in N;x>5\right\}\)
a) 5X+5X+2=650
=>5X.1+5X.52=650
=>5X.(1+52)=650
=>5X.26=650
=>5x=650:26
=>5X=25
=>5X=52
=>X=2
b) 3X-1+5.3X-1=162
=>3X-1.1+5.3X-1=162
=>3X-1.(1+5)=162
=>3X-1.6=162
=>3X-1=162:6
=>3X-1=27
=>3X-1=33
=>3X=33+1
=>3X=34
=>X=4
=> \(5^x+5^x.5^2=650\)
\(5^x\left(1+5^2\right)=650\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25;x=2\)
Bài làm :
\(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x.\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Học tốt
\(3.3^{x-2}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=27=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
\(3\cdot3^{x-2}+5\cdot3^{x-1}=162\)
\(3^{x-1}+5\cdot3^{x-1}=162\)
\(3^{x-1}\left(5+1\right)=162\)
\(3^{x-1}\cdot6=162\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(x-1=3\)
\(x=4\)