K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

x2+y2=1998

x2=1998-y2

thay x2=1998-y2 vào x2-y2=1999 ta được:

1998-y2-y2=1999

-2y2=1

y2=-1/2(vô lí)

=>ko có x;y nào thỏa mãn

21 tháng 8 2015

trời     

24 tháng 3 2018

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

24 tháng 3 2018

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

đặt x=1998k;y=1999k;z=2000k

=>(x-y)3=(1998k-1999k)3=-k3

8(x-y)2(y-z)=8.k2.-k=-8k3

=>đề bài sai

=>bạn đăng câu hỏi sai

17 tháng 7 2016

thôi mk giải được rồi

23 tháng 5 2018

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}\)

\(\Rightarrow\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}\)

\(\Rightarrow\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\)

\(\Rightarrow\left(\frac{x-z}{-2}\right)^3=\left(\frac{x-y}{-1}\right)^2.\left(\frac{y-z}{-1}\right)\)

\(\Rightarrow\frac{\left(x-z\right)^3}{\left(-2\right)^3}=\frac{\left(x-y\right)^2}{\left(-1\right)^2}.\frac{\left(y-z\right)}{-1}\)

\(\Rightarrow\left(x-z\right)^3=8.\left(x-y\right)^2.\left(y-z\right)\)

8 tháng 12 2018

ĐẶT\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow x=1998k,y=1999k,z=2000k\)

\(\Rightarrow\left(x-z\right)^3=\left(1998k-2000k\right)^3=\left(-2k\right)^3=-8k^3\)

\(8.\left(x-y\right)^2.\left(y-z\right)=8.\left(1998k-1999k\right)^2.\left(1999k-2000k\right)=-8k^3\)

=> đpcm

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

5 tháng 4 2019

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

12 tháng 10 2019

Ta có x2-2y2=1\(\Leftrightarrow\)x2=2y2+1\(\Rightarrow\)x là số lẻ.

Đặt x=2k+1\(\Rightarrow\) (2k+1)2=2y2+1\(\Leftrightarrow\) 4k2+4k+1=2y2+1\(\Leftrightarrow\) y2=2k2+2k\(\Rightarrow\) y chẵn, mà y là số nguyên tố \(\Rightarrow\) y=2\(\Rightarrow\) x=3

15 tháng 1 2018

Bài 2 :

=> ||x^2-y|-8|+y^2+1 = 0

Mà ||x^2-y|-8| >= 0 ; y^2 >= 0 

=> ||x^2-y|-8| + y^2 + 1 > 0

=> ko tồn tại x,y tm bài toán

Tk mk nha

3 tháng 4 2019

Bạn lập bảng xét dấu giùm mình nhé

Nếu bạn chưa quen cách làm này thì có thể lên mạng nhé

Chúc bạn học tốt

\(\text{vì x,y là số nguyên}\Rightarrow\left|x-1\right|\in Z,\left|y-2\right|\in Z\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left|y-2\right|\ge0\end{cases}\Rightarrow\text{Để }\left|x-1\right|+\left|y-2\right|=2}\)

\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left|y-2\right|=2\end{cases}\text{hoặc }\hept{\begin{cases}\left|x-1\right|=2\\\left|y-2\right|=0\end{cases}}}\text{hoặc }\hept{\begin{cases}\left|x-1\right|=1\\\left|y-2\right|=1\end{cases}}\)

Tự thay vào mà tính :))

p/s: cho tớ hỏi bạn kia lập bảng rồi tính = cách nào vậy, làm rõ xem ;vvv