Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{2}{3}.\left(\dfrac{2}{3}-\dfrac{1}{2}\right)\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{2}{3}.\dfrac{1}{6}\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{1}{9}\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\dfrac{5}{9}\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{10}{27}\right\}\)
=\(\dfrac{2}{3}.\dfrac{8}{27}\)
=...
Câu 1/
\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)
Lấy (1).(2) vế theo vế được
\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)
\(\Leftrightarrow x+y-\left(x-y\right)=2\)
\(\Leftrightarrow2y=2\)
\(\Leftrightarrow y=1\)
Thế vô tìm được x.
Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.
Có: \(\left\{{}\begin{matrix}\dfrac{x}{y}=1,125\\x^2-y^2=2,456\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,125y\\x^2-y^2=2,456\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,125y\\1,125^2\cdot y^2-y^2=2,456\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,125y\\y^2\left(1,125^2-1\right)=2,456\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,125y\\y^2=\dfrac{2,456}{1,125^2-1}=\dfrac{19648}{2125}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,125y\\y=\sqrt{\dfrac{19468}{2125}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,125\cdot\sqrt{\dfrac{19468}{2125}}\\y=\sqrt{\dfrac{19468}{2125}}\end{matrix}\right.\) (tm)
Vậy......................
p/s: Nếu x bạn muốn chuyển về dạng stp thì bấm máy tính nhé/-/
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
Ta có: \(a+b+c=1 \)
\(\Leftrightarrow(a+b+c)^2=1 \)
\(\Leftrightarrow ab+bc+ca=0 (1) \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{(x+y+z)}{\left(a+b+c\right)}=x+y+z\)
\(\Leftrightarrow x=a\left(x+y+z\right)\)
\(\Leftrightarrow y=b.\left(x+y+z\right)\)
\(\Leftrightarrow z=c.\left(x+y+z\right)\)
\(\Rightarrow xy+yz+zx=ab.\left(x+y+z\right)^2+bc.\left(x+y+z\right)^2+ca.\left(x+y+z\right)^2\)
\(\Leftrightarrow xy+yz+zx=\left(ab+bc+ca\right).\left(x+y+z\right)^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(xy+yz+zx=0\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+1}{x-2}=\dfrac{x+2}{x-9}=\dfrac{x+1-x-2}{x-2-x+9}=-\dfrac{1}{7}\)
Hay \(\dfrac{x+1}{x-2}=-\dfrac{1}{7}\Leftrightarrow-x+2=7x+7\Leftrightarrow-x=7x+5\Leftrightarrow-x-7x=5\Leftrightarrow-8x=5\Leftrightarrow x=-\dfrac{5}{8}\)b) phải sử dụng \(\left\{{}\begin{matrix}x\left(x+y\right)=10\\y\left(x+y\right)=6\end{matrix}\right.\)(sửa đề)
\(\Leftrightarrow\left(x+y\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x+y=4\\x+y=-4\end{matrix}\right.\)
Nên \(\left[{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\)