Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
Ta có:
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\Rightarrow\left(x-y\right).4=\left(x+2y\right).3\)
\(\Rightarrow4x-4y=3x+6y\)
\(\Rightarrow4x=3x+10y\)
\(\Rightarrow x=10y\)
Thay \(x=10y\) vào \(\frac{x-y}{x+2y}=\frac{3}{4}\), ta có:
\(\frac{10y-y}{10y+2y}=\frac{3}{4}\)
\(\Rightarrow\frac{9y}{12y}=\frac{3}{4}\)
êk? thôi chắc chịu, pai pai, cứ để hiện lên cho oách
2, Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}=a\)
\(\Rightarrow x=3a;y=2a;z=6a\)
\(5x^2+y^2-z^2=117\Rightarrow5.\left(3a\right)^2+\left(2a\right)^2-\left(6a\right)^2=117\)
\(\Rightarrow13a^2=117\Rightarrow a^2=9\)\(\Rightarrow a=3\) hoặc \(a=-3\)
+ Với \(a=3\) thì \(x=3.3=9;y=3.2=6;z=3.6=18\)
+Với \(a=-3\) thì \(x=-9;y=-6;z=-18\)
a. Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)
=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)
Vậy x=12; y=30.
b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)
=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)
=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)
+) x-0,25=2,5
=> x=2,5+0,25
=> x=2,75
+) x-0,25=-2,5
=> x=-2,5+0,25
=> x=-2,25
Vậy x \(\in\){-2,25; 2,75}.
c. y=kx
=> -17=k.8
=> k=-17/8
Vậy hệ số tỉ lệ là -17/8.
a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=> x=12 ; y = 30
b) \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)
=> x-0,25 = 2,5 hoac: -2,5
=> x = 2,75 hoac x= -2,25
Vay: x la { 2,75 ; -2,25 }
c) Ti le gi vay ban.
Neu thuan thi he so ti le la: \(-\frac{17}{8}\)
Neu nghich thi he so ti le la : -136
a, Thiếu đề
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=-\frac{24}{-4}=6\)
\(x=6;y=36;z=18\)
c, Ta có : \(3x-2y=4z\Leftrightarrow3x-2y-4z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y-4z}{6-2-12}=\frac{0}{-8}=0\)
\(x=y=z=0\)
b) Đặt \(x=\frac{y}{6}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=k\\y=6k\\z=3k\end{cases}}\)
Khi đó 2x - 3y + 4z = -24
<=> 2k - 3.6k + 4.3k = -24
=> 2k - 18k + 12k = -24
=> -4k = -24
=> k = 6
=> x = 1 ; y = 36 ; z = 18
c) Đặt \(\frac{x}{2}=y=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=k\\z=3k\end{cases}}\)
Khi đó 3x - 2y = 4z
<=> 3.2k - 2k = 4.3k
=> 6k - 4k = 12k
=> 2k = 12k
=> k = 0
=> x = y = z = 0
=> (x-2y)(6-3y)=(y+2)3x
<=>6x-3xy-12y+6y^2=3xy+6x
<=>6x-3xy-12y+6y^2-3xy-6x=0
<=>6y^2-6xy-12y=0
<=>6y(y-x-2)=0
=>\(\orbr{\begin{cases}6y=0\\y-x-2=0\end{cases}}\)
=>\(\orbr{\begin{cases}y=0\\x=2\end{cases}}\)