Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
a) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x-2y+z}{5-6+4}=\frac{6}{3}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{2y}{6}=2\\\frac{z}{4}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5.2\\2y=6.2\\z=4.2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(10,6,8\right)\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2-2y^2+z^2}{4-18+16}=\frac{8}{2}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)\in\left\{\left(-4,-6,-8\right),\left(4,6,8\right)\right\}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
a) Ta có \(\frac{x-1}{2}\)\(=\)\(\frac{y-2}{3}\)\(=\)\(\frac{z-3}{4}\)\(=\)\(\frac{2x-2}{4}\)\(=\)\(\frac{3y-6}{9}\)\(=\)\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\)\(\frac{\left(2x+3y-z\right)-5}{9}\)\(=\)\(\frac{50-5}{9}\)\(=\)5 Do đó x \(=\)5\(\times\)2\(+\)1\(=\)11 y\(=\)5\(\times\)3\(+\)2\(=\)17 z\(=\)5\(\times\)4\(+\)3\(=\)23
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\) và \(x+2y-z=156\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+2\left(y+2\right)-\left(z-1\right)}{3+8-5}=\frac{x+1+2y+4-z+1}{6}=\frac{\left(x+2y-z\right)+1+4+1}{6}=\frac{156+6}{6}=27\)
\(\Rightarrow\hept{\begin{cases}x=\left(27.3\right)-1\\y=\left(27.4\right)-2\\z=\left(27.5\right)+1\end{cases}\Rightarrow\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}}\)
Ta có:
x + 1/3 = y + 2/4 = z - 1/5
=> x + 1/3 = 2y + 4/8 = z - 1/5
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x + 1/3 = 2y + 4/8 = z - 1/5 = (x + 1) + (2y + 4) - (z - 1)/3 + 8 - 5
= (x + 2y - z) + (1 + 4 + 1)/6
= 156 + 6/6 = 162/6 = 27
=> x + 1 = 27.3; y + 2 = 27.4; z - 1 = 27.5
=> x + 1 = 81; y + 2 = 108; z - 1 = 135
=> x = 80; y = 106; z = 136
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{x+3}{5}=\frac{x+y+z+1+2+3}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\)\(\frac{x+1}{3}=2\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z=7\)
Vậy bạn tự kết luận nha
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
Ta có:
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\Rightarrow\left(x-y\right).4=\left(x+2y\right).3\)
\(\Rightarrow4x-4y=3x+6y\)
\(\Rightarrow4x=3x+10y\)
\(\Rightarrow x=10y\)
Thay \(x=10y\) vào \(\frac{x-y}{x+2y}=\frac{3}{4}\), ta có:
\(\frac{10y-y}{10y+2y}=\frac{3}{4}\)
\(\Rightarrow\frac{9y}{12y}=\frac{3}{4}\)
êk? thôi chắc chịu, pai pai, cứ để hiện lên cho oách
2, Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}=a\)
\(\Rightarrow x=3a;y=2a;z=6a\)
\(5x^2+y^2-z^2=117\Rightarrow5.\left(3a\right)^2+\left(2a\right)^2-\left(6a\right)^2=117\)
\(\Rightarrow13a^2=117\Rightarrow a^2=9\)\(\Rightarrow a=3\) hoặc \(a=-3\)
+ Với \(a=3\) thì \(x=3.3=9;y=3.2=6;z=3.6=18\)
+Với \(a=-3\) thì \(x=-9;y=-6;z=-18\)