K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Đè như ri phải ko 5x2+9y2-12xy+24x-48y+80=0

30 tháng 7 2021

không đề như mình đăng

26 tháng 6 2017

a)Đặt \(A=3x^2-x+1\)

          \(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)

            \(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)

                   Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)

Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)

         Vậy Min A = \(\frac{11}{12}\) khi x=1/6

b)Tương tụ

18 tháng 1 2023

\(A=5x^2+9y^2-12xy+24x-48y+81\)

\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)

\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)

\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)

\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)

\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)

\(\Rightarrow A_{min}=1\)

22 tháng 12 2016

trước tiên bạn nên đưa về dạng tổng hai bình phương 

10 tháng 7 2017

a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9

b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27

c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23

Câu d mình ko biết làm

10 tháng 7 2017

d) D= 5x^2+9y^2-12xy+24x-48y+82

\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)

\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)