Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(4x-30\right)-3\left(x+5\right)+4\left(x-10\right)=5\left(x+2\right)\)
\(\Leftrightarrow8x-60-3x+15+4x-40=5x+10\)
\(\Leftrightarrow9x-35=5x+10\)
\(\Leftrightarrow9x-5x=10+35\)
\(\Leftrightarrow4x=45\)
\(\Leftrightarrow x=\dfrac{45}{4}=11,25\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\left(6x+1\right)\)
\(\Leftrightarrow\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}+x=4x+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{31}{60}-\dfrac{2}{3}=4x-x\)
\(\Leftrightarrow3x=\dfrac{1}{60}\)
\(\Leftrightarrow x=\dfrac{1}{180}\)
c) \(\dfrac{7}{3}-\left(2x-\dfrac{1}{3}\right)=\left(-2\dfrac{1}{6}+1\dfrac{1}{2}\right):0,25\)
\(\Leftrightarrow\dfrac{7}{3}-2x+\dfrac{1}{3}=-1\dfrac{2}{3}:\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-5}{3}.4\)
\(\Leftrightarrow\dfrac{8}{3}-2x=\dfrac{-20}{3}\)
\(\Leftrightarrow2x=\dfrac{8}{3}+\dfrac{20}{3}\)
\(\Leftrightarrow2x=\dfrac{28}{3}\)
\(\Leftrightarrow x=4\dfrac{2}{3}\)
d) \(0,75+\dfrac{5}{9}:x=5\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3}{4}+\dfrac{5}{9}:x=\dfrac{11}{2}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{11}{2}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{9}:x=\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{5}{9}:\dfrac{19}{4}\)
\(\Leftrightarrow x=\dfrac{20}{171}\)
\(a)\dfrac{-1}{4}.13\dfrac{9}{11}-0,25.6\dfrac{2}{11}\)
\(=\dfrac{-1}{4}.\dfrac{152}{11}-\dfrac{1}{4}.\dfrac{68}{11}\)
\(=-38-\dfrac{17}{11}\)
\(=\dfrac{-418}{11}+\dfrac{-17}{11}\)
\(=\dfrac{-435}{11}\)
\(b)\dfrac{31}{9}.\left|x\right|-\dfrac{5}{2}=\dfrac{8}{3}\)
\(\Leftrightarrow\dfrac{31}{9}.\left|x\right|=\dfrac{16}{6}+\dfrac{15}{6}\)
\(\Leftrightarrow\dfrac{31}{9}.\left|x\right|=\dfrac{31}{6}\)
\(\Leftrightarrow\left|x\right|=\dfrac{31}{6}.\dfrac{9}{31}\)
\(\Leftrightarrow\left|x\right|=1,5\)
\(\Leftrightarrow x\in\left\{1,5;-1,5\right\}\)
Vậy \(x\in\left\{1,5;-1,5\right\}\)
a) \(\dfrac{5}{6}:x=30:3\)
\(\Leftrightarrow\dfrac{5}{6}:x=10\)
\(\Leftrightarrow x=\dfrac{5}{6}:10\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy .......
b) \(x:2,5=0,003:0,75\)
\(\Leftrightarrow x:2,5=0,004\)
\(\Leftrightarrow x=0,004.2,5\)
\(\Leftrightarrow x=0,01\)
Vậy .......
c) \(3,8:\left(2x\right)=\dfrac{1}{4}:2\dfrac{2}{3}\)
\(\Leftrightarrow3,8:\left(2x\right)=\dfrac{1}{4}:\dfrac{8}{3}=\dfrac{3}{32}\)
\(\Leftrightarrow2x=3,8:\dfrac{3}{32}\)
\(\Leftrightarrow2x=\dfrac{698}{25}\)
\(\Leftrightarrow x=\dfrac{304}{15}\)
Vậy ...
d) \(\dfrac{2}{3}:0,4=x:\dfrac{4}{5}\)
\(\Leftrightarrow x:\dfrac{4}{5}=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{8}{15}\)
Vậy ....
e) \(3\dfrac{4}{5}:40\dfrac{8}{15}=0,25:x\)
\(\Leftrightarrow0,25:x=\dfrac{19}{5}:\dfrac{608}{15}\)
\(\Leftrightarrow0,25x=\dfrac{57}{608}\)
\(\Leftrightarrow x=\dfrac{228}{608}\)
Vậy ...
e) \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
\(\Leftrightarrow xx=\left(-60\right)\left(-15\right)\)
\(\Leftrightarrow x^2=900\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=30^2\\x^2=\left(-30\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\)
Vậy ...
Bai 1: \(\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right).\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right).\dfrac{1}{2}:\left(\dfrac{27}{12}-\dfrac{14}{12}\right)\)
\(=\left(-4\right):\dfrac{13}{12}\)
\(=\left(-4\right).\dfrac{12}{13}\)
\(=\dfrac{-48}{13}\)
Bai 2:
\(a,4\dfrac{1}{3}:\dfrac{x}{4}=6:0,3\)
\(\dfrac{13}{3}:\dfrac{x}{4}=20\)
\(\dfrac{x}{4}=\dfrac{13}{3}:20\)
\(\dfrac{x}{4}=\dfrac{13}{60}\)
➩ \(x.60=4.13\) ➩ \(x.60=52\) ➩ \(x=\dfrac{13}{15}\)
Vay \(x=\dfrac{13}{15}\)
\(b,\left(2^3:4\right).2^{\left(x+1\right)}=64\)
\(\left(8:4\right).2^{x+1}=64\)
\(2.2^{x+1}=64\)
\(2^{x+1}=32\)
➩ \(2^{x+1}=2^5\) ➩ \(x+1=5\) ➩ \(x=4\)
Vay \(x=4\)
1)
a) \(0,25^x\cdot12^x=243\)
\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(38^y:19^y=512\)
\(\Leftrightarrow2y\cdot y=512\)
\(\Leftrightarrow2y^2=512\)
\(\Leftrightarrow y^2=256\)
\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)
Vậy \(y_1=-16;y_2=16\)
2)
a) \(3^x+3^{x+2}=2430\)
\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)
\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)
\(\Leftrightarrow10\cdot3^x=2430\)
\(\Leftrightarrow3^x=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(2^{x+3}-2^x=224\)
\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)
\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)
\(\Leftrightarrow7\cdot2^x=224\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
3)
a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)
b) \(\left(x+0,7\right)^3=-27\)
\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x+\dfrac{3}{10}=-3\)
\(\Leftrightarrow x=-3-\dfrac{3}{10}\)
\(\Leftrightarrow x=-\dfrac{37}{10}\)
Vậy \(x=-\dfrac{37}{10}\)
4)
a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)
b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=1\)
\(\Leftrightarrow2x=1+1\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
1. a) \(0,25^x.12^x=243\)
\(\Rightarrow\left(0,25.12\right)^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(38^y:19^y=512\)
\(\Rightarrow\left(38:19\right)^y=512\)
\(\Rightarrow2^y=2^9\)
\(\Rightarrow y=9\)
Vậy \(y=9.\)
2) a) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x\left(1+9\right)=2430\)
\(\Rightarrow3^x=243=3^5\)
\(\Rightarrow x=5\)
Vậy x=5.
b) \(2^{x+3}-2^x=224\)
\(\Rightarrow2^x\left(8-1\right)=224\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
Vậy x=5.
Bài 3: dễ tự làm.
Cộng hai vế với 1
\(\Rightarrow\dfrac{x+1}{9}+\dfrac{x+4}{6}+\dfrac{x+5}{5}+3=\dfrac{x+2}{8}+\dfrac{x+3}{7}+\dfrac{x+6}{4}+3\)
\(\Rightarrow\left(\dfrac{x+1}{9}+1\right)+\left(\dfrac{x+4}{6}+1\right)+\left(\dfrac{x+5}{5}+1\right)=\left(\dfrac{x+2}{8}+1\right)+\left(\dfrac{x+3}{7}+1\right)+\left(\dfrac{x+6}{4}+1\right)\)\(\Rightarrow\left(\dfrac{x+1}{9}+\dfrac{9}{9}\right)+\left(\dfrac{x+4}{6}+\dfrac{6}{6}\right)+\left(\dfrac{x+5}{5}+\dfrac{5}{5}\right)=\left(\dfrac{x+2}{8}+\dfrac{8}{8}\right)+\left(\dfrac{x+3}{7}+\dfrac{7}{7}\right)+\left(\dfrac{x+6}{4}+\dfrac{4}{4}\right)\)\(\Rightarrow\dfrac{x+10}{9}+\dfrac{x+10}{6}+\dfrac{x+10}{5}=\dfrac{x+10}{8}+\dfrac{x+10}{7}+\dfrac{x+10}{4}\)
\(\Rightarrow\dfrac{x+10}{9}+\dfrac{x+10}{6}+\dfrac{x+10}{5}-\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{4}=0\)
\(\Rightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{4}\right)=0\)
Làm nốt đi, tính như bình thường
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
dễ ấy mà