K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

17 tháng 7 2017

a,

\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)

\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)

Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)

b,

\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)

Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)

c,

\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)

Vậy \(x=-12;y=-28\)

d,

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)

Vậy \(x=80;y=16;z=-32\)

e,

\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)

Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)

f,

\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)

\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)

Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)

g,

\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)

\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)

Vậy \(x=6;y=16;z=10\)

Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé

10 tháng 10 2018

a) ta có : \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{x}{16}=\dfrac{y}{24}\) ( 1)

\(\dfrac{y}{8}=\dfrac{z}{5}\) = \(\dfrac{y}{24}=\dfrac{z}{15}\) (2)

từ (1) và (2) , ta có : \(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}\)

mà x - y + z = 35

theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{16}=\dfrac{y}{24}=\dfrac{z}{15}=\dfrac{x-y+z}{16-24+15}=\dfrac{35}{7}=5\)

do đó : \(\dfrac{x}{16}=5\) => x = 5. 16 = 80

\(\dfrac{y}{24}=5\) => y = 5.24 = 120

\(\dfrac{z}{15}=5\) => z = 5.15 = 75

vậy x = 80

y = 120

z = 75

10 tháng 10 2018

mấy câu còn lại thì tương tự nha bn

8 tháng 10 2017

a,3x=2y;7y=5z

=>\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta co:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\\ \Rightarrow x=2.10=20\\ y=2.15=30\\ z=2.21=42\)

Các câu sau tương tự

10 tháng 10 2017

b,\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\),\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và 2x-3y+z=6

Từ đề bài ta có:

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)\(\Rightarrow\)\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)(2)

từ (1) và (2)\(\Rightarrow\)\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{20}\)\(\Rightarrow\)\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{18}\)=\(\dfrac{3y}{36}\)=\(\dfrac{z}{20}\)=\(\dfrac{2x-3y+z}{18-36+20}\)=\(\dfrac{6}{2}\)=3

\(\Rightarrow\)x=3.9=27

y=3.12=36

z=3.20=60

Vậy.....

chúc bạn học tốt,nhớ tick cho mình nhaleuleu

23 tháng 6 2017

Bài 1:

Giải:

Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)

\(xyz=30\)

\(\Rightarrow240k^3=30\)

\(\Rightarrow k^3=\dfrac{1}{8}\)

\(\Rightarrow k=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)

Vậy...

Bài 2: sai đề

Bài 3:

Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)

Ta có: \(x+2y+3z=38\)

\(\Rightarrow2k+1+8k-6+18k+15=38\)

\(\Rightarrow28k=28\)

\(\Rightarrow k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)

Vậy...

23 tháng 6 2017

1) Ta có :

\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)

\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)

=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)

Thay vào đẳng thức xyz = 30

=> 8k.6k.5k = 30

<=> 240k3 = 30

<=> k3 = 8

<=> k = 2

\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)

b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .

c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)

=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)

Thay vào đẳng thức , ta có :

x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38

=> 28k = 38

=> k = \(\dfrac{19}{14}\)

Vậy .....

30 tháng 11 2017

a, Ta có:

\(x-24=y\\ x-y=24\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)

+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)

+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)

Vậy \(x=42;y=18\)

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)

+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)

+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)

+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)

Vậy \(x=48;y=67,2;z=19,2\)

30 tháng 11 2017

mk giải đc bao nhiêu thì bn làm bấy nhiêu nha