Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a, x + |2 - x| = 6
=> |2 - x| = 6 - x (1)
=>\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\Rightarrow\orbr{\begin{cases}2=6\left(ktm\right)\\x=4\left(tm\right)\end{cases}}\)
b. |x - 7| = 7
=> \(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}\Rightarrow\orbr{\begin{cases}x=14\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)
c, Tương tự b
bài 2:
a, Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y+5\right|\ge0\end{cases}}\forall x,y\Rightarrow\left|x+2\right|+\left|y+5\right|\ge0\) (1)
Mà |x + 2| + |y + 5| = 0 (2)
Từ (1),(2) => \(\hept{\begin{cases}x+2=0\\y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
b, tương tự a
1)
a) x + | 2 - x | = 6
\(\Rightarrow\)| 2 - x | = 6 - x
\(\Rightarrow\)\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2=6\\x=4\end{cases}}\)
b) | x - 7 | = 7
x - 7 = +;- 7
\(\Rightarrow\)\(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=14\\x=0\end{cases}}\)
c) | x + 1 | = 5
x + 1 = +;- 5
\(\Rightarrow\)\(\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
2) Tự làm :v
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
a) |x - 1| + |x - 3| < x + 1
Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
=> x + 1 > 2
=> x > 1
+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2
Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn
+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1
=> 2x - x < 1 + 4
=> x < 5
Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài
b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)
=> |x + y + 2| + |2y + 1| = 0
\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)
Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài
a, \(\left|x+25\right|+\left|-y+5\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x+25\right|\ge0\\\left|-y+5\right|\ge0\end{matrix}\right.\Rightarrow\left|x+25\right|+\left|-y+5\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+25\right|=0\\\left|-y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-25\\y=5\end{matrix}\right.\)
Vậy x = -25 và y = 5
b, \(\left|x-40\right|+\left|x-y+10\right|\le0\)
Mà \(\left|x-40\right|+\left|x-y+10\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-40\right|=0\\\left|x-y+10\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=40\\y=50\end{matrix}\right.\)
Vậy x = 40 và y = 50
\(\left|x+25\right|+\left|-y+5\right|=0\)
\(\left\{{}\begin{matrix}\left|x+25\right|\ge0\\\left|-y+5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+25\right|+\left|-y+5\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x+25\right|=0\Rightarrow x=25\\\left|-y+5\right|=0\Rightarrow-y=-5\Rightarrow y=5\end{matrix}\right.\)
\(\left|x-40\right|+\left|x-y+10\right|\le0\)
\(\left\{{}\begin{matrix}\left|x-40\right|\ge0\\\left|x-y+10\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-40\right|+\left|x-y+10\right|\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-40\right|+\left|x-y+10\right|\le0\\\left|x-40\right|+\left|x-y+10\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-40\right|+\left|x-y+10\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-40\right|=0\Rightarrow x=40\\\left|x-y+10\right|=0\Rightarrow x-y=-10\Rightarrow y=50\end{matrix}\right.\)