Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
b) \(\left(x-1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=6x^2-6x^2+1+1+6\)
\(=8\)
Vậy biểu thức trên k phụ thuộc vào biến.
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
Xét \(Q\left(x\right)=P\left(x\right)-x^2\)
Thay \(x=1\Rightarrow Q\left(1\right)=P\left(1\right)-1^2=0\)
\(x=2\Rightarrow Q\left(2\right)=P\left(2\right)-2^2=0\)
Tương tự \(Q\left(3\right)=0\) ; \(Q\left(4\right)=0\)
\(\Rightarrow Q\left(x\right)\) có ít nhất 4 nghiệm \(x=\left\{1;2;3;4\right\}\)
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)\) với \(k\) là số thực bất kì
Mà \(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow P\left(x\right)=Q\left(x\right)+x^2\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)+x^2\)
Do \(P\left(5\right)=2\Rightarrow\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-4\right)\left(5-k\right)+5^2=2\)
\(\Leftrightarrow24\left(5-k\right)=-23\Rightarrow k=\frac{143}{24}\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-\frac{143}{24}\right)+x^2\)
\(\Rightarrow P\left(6\right)=41\) ; \(P\left(7\right)=424\)
a)|7x-5|=|2x-3|
=>7x-5=2x-3 hoặc 7x-5=3-2x
=>5x=2 hoặc 9x=8
=>x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
Vậy x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
b)|4x-5|=x-7
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x-7\ge0\Rightarrow x\ge7\)
=>4x-5=x-7 hoặc 4x-5=-(x-7)
=>3x=-2 hoặc 5x=12
=>x=\(-\frac{2}{3}\)(loại do \(x\ge7\)) hoặc x=\(\frac{12}{5}\)(loại do \(x\ge7\))
Vậy pt vô nghiệm
c)Ta thấy: \(\hept{\begin{cases}\left(x+8\right)^4\ge0\\\left|y-7\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x+8\right)^4+\left|y-7\right|\ge0\)
Dấu = khi \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left|y-7\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+8=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
\(b,\)\(\left(3x-2\right)\left(5-3x\right)-3x\left(7-3x\right)\)
\(=15x-9x^2-10+6x-21x+9x^2\)
\(=-10\)
Vậy GTBT không phụ thuộc vào GT của x
\(c,\)\(x\left(x+6\right)\left(x+1\right)-x\left(x^2+5\right)-x\left(7x+1\right)\)
\(=x^3+7x^2+6x-x^3-5x-7x^2-x\)
\(=0\)
Vậy GTBT không phụ thuộc vào GT của x
À câu b mình phải sửa lại chút đề thì mới thỏa mãn yêu cầu đề bài đấy. Coi lại hộ mình với
\(a)2\left(x+1\right)=3+2x\\ \Leftrightarrow2x+2=3+2x\\ \Leftrightarrow2x-2x=3-1\\ \Leftrightarrow0x=2\left(VN\right)\)
Vậy phương trình vô nghiệm
\(b)4x\left(1-x\right)-8=1-\left(4x^2+3\right)\\ \Leftrightarrow4x-4x^2-8=1-4x^2-3\\ \Leftrightarrow4x-8=-2\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(S=\left\{\dfrac{3}{2}\right\}\)
\(c)x^3+1=x\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=x\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-x+1-x\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-1;1\right\}\)
\(d)\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow 12\left(\dfrac{3x-2}{6}-5\right)=12.\dfrac{3-2\left(x+7\right)}{4}\)
\(\Leftrightarrow 6x-4-60=9-6\left(x+7\right)\)
\(\Leftrightarrow 6x-64=9-6x-42\)
\(\Leftrightarrow 6x-64=-6x-33\)
\(\Leftrightarrow 6x+6x=-33+64\\\Leftrightarrow 12x=31\\\Leftrightarrow x=\dfrac{31}{12}\)
Vậy \(S=\left\{\dfrac{31}{12}\right\}\)
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
a) ta có x-2/5=3/8 => x=3/8+2/5 => x=31/40
b) ta có x^2/6=24/25 => x^2=144/25 => x= +_ 12/5
c) x-1/x-5 =6/7 với x # 5) => 7(x-1)=6(x-5) => 7x-7=6x-30 => 7x-6x=6-30 => x=-24 \
nghĩ thế !