K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

Theo giả thiết, ta có:

\(x^3+y^3=4028\left(x^2-xy+y^2\right)\Leftrightarrow\frac{x^3+y^3}{x^2-xy+y^2}=4028\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}=4028\Leftrightarrow x+y=4028\)

Lại có: \(x-y=2\)

nên \(x+y+x-y=4028+2\Leftrightarrow2x=4030\Leftrightarrow x=2015\)

Dễ dàng suy ra được \(y=2013\)

Vậy, \(x=2015;y=2013\)

11 tháng 2 2017

câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)

câu 2: mình tạm chỉnh lại đề tý

\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)

câu 3:

\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)

\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)

\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)

Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010 

11 tháng 2 2017

câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)

thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)

\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)

b: \(=\left(x+3+y\right)\left(x+3-y\right)\)

c: \(=x\left(9x^2-6xy+y^2\right)=x\left(3x-y\right)^2\)

d: \(=\left(xy+6\right)\left(x^2y^2-6xy+36\right)\)

e: \(=\left(x+y-3\right)\left(x^2+2xy+y^2+3x+3y+9\right)\)

11 tháng 12 2019

Bài 1 :

Ta có : a + b + c = 0

\(\Leftrightarrow\)a + b = - c

Ta có : a3 + b3 + c3 

= ( a3 + b3 ) + c3

= ( a + b )3 - 3ab . ( a + b ) + c3 ( 1 )

Thay a + b = - c vào ( 1 ) , ta được :

- c3 - 3ab . ( - c ) + c3 = 3ab

Hay a3 + b3 + c3 = 3ab ( đpcm )

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:

$H=x^3+(2y)^3-x^3(1-y^3)-8y^3+6x^2y^2+12xy+8$
$=x^3+8y^3-x^3+x^3y^3-8y^3+6x^2y^2+12xy+8$

$=(x^3-x^3)+(8y^3-8y^3)+x^3y^3+6x^2y^2+12xy+8$

$=x^3y^3+6x^2y^2+12xy+8$