Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
a) =\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(x^2-x+1-\frac{5}{2}x\right)^2-\frac{9}{4}x^2\)
\(=\left(x^2+1-2x\right)\left(x^2+1-5\right)\)
a) Giả sử đa thức f(x) sau khi lũy thừa bậc 2012 viết ra dưới dạng tổng quát:
\(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_2x^2+a_1x+a_0\)
Thì: \(f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0=\left(1^2+3\cdot1-1\right)^{2012}=3^{2012}\)(1)
Hay TỔNG của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Và: \(f\left(-1\right)=a_0-a_1+a_2-a_3+...=\left(\left(-1\right)^2+3\left(-1\right)-1\right)^{2012}=\left(-3\right)^{2012}=3^{2012}\)(2)
Hay HIỆU của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Vậy, tổng các hệ số của hạng tử chứa lũy thừa bậc chẵn của x là: 1/2(TỔNG + HIỆU) = 32012.