K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

a, x + 5 \(⋮\) x - 2

\(\Leftrightarrow\) ( x - 2 ) + 7 \(⋮\) x - 2

\(\Leftrightarrow\) 7 \(⋮\) x - 2 ( vì x - 2 \(⋮\) x - 2 )

\(\Leftrightarrow\) x - 2 \(\in\) Ư(7) = \(\left\{1,-1,7,-7\right\}\)

Ta có bảng :

x - 2 - 1 1 - 7 7
x 1 3 - 5 9

Vậy x \(\in\) \(\left\{1,3,9,-5\right\}\)

b, 2x + 1\(⋮\) x +5

\(\Leftrightarrow\) 2( x + 5 ) + 9 \(⋮\) x + 5

\(\Leftrightarrow\) 9 \(⋮\) x + 5 [ vì 2(x+5) \(⋮\) x + 5 ]

\(\Leftrightarrow\) x + 5 \(\in\) Ư (9) = { 1; -1; 3; 9; -9}

Ta có bảng :

x + 5 1 - 1 - 3 3 9 - 9
x - 4 - 6 -8 -2 4 -14

Vậy x \(\in\) { -4;-6;-8;-2;4;-14}

x+5 chia hết cho x-2 => x-2+7 chia hết cho x-2=>7 chia hết cho x-2=> x-2 thuộc vào ước của 7=( -1,1,7,-7). TH1: x-2=1 => x =3. Các TH còn lại tự làm

7 tháng 11 2017

\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)

Vậy \(\left(3n\right)^{100}⋮81\)

Chúc em học tốt!vui

7 tháng 11 2017

Cảm ơn cj nhìu nhìu lắm!!!hihingaingung

2 tháng 4 2017

Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)

Khi chia \(a\) cho \(3\) ta có các trường hợp :

\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)

\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)

\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)

Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)

\(\rightarrowđpcm\)

~ Chúc bn học tốt ~

2 tháng 4 2017

Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )

Xét 3 trường hợp :

+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3

+ a = 3k + 1

=> a+2 = 3k + 1 + 2

= 3k + ( 1 + 2 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+2) \(⋮\) 3

+ a = 3k + 2

=> a+1 = 3k + 2 + 1

= 3k + ( 2 + 1 )

= 3k + 3

= 3(k+1) chia hết cho 3

=> (a+1) \(⋮\) 3

Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

20 tháng 5 2017

Làm nhé! Nhưng thấy số to quá nên hơi hoang mang style ak!

Ta có: 7n2 + 8 = 7n2 - 42n + 42n - 252 + 260

= 7n.( n - 6) + 42.( n - 6) + 260

Vì n - 6 \(⋮\) n - 6 => \(\left\{{}\begin{matrix}7n.\left(n-6\right)⋮n-6\\42.\left(n-6\right)⋮n-6\end{matrix}\right.\)

=> Để 7n2 + 8 \(⋮\) n - 6 thì 260 \(⋮\) n - 6

=> n - 6 \(\in\) Ư(260) = \(\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20;\pm26;\pm52;\pm65;\pm130;\pm260\right\}\)

=> n \(\in\) \(\left\{7;5;8;4;10;2;11;1;16;-4;19;-7;26;-14;32;-20;58;-46;71;-59;136;-124;266;\right\};-254\)

14 tháng 4 2017

Ta có: ( x + 2)( x - 5) = -12

=> \(x+2\inƯ\left(-12\right);x-5\inƯ\left(-12\right)\)

mà Ư (-12) = \(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x+2\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\\x-5\in\left\{"....."\right\}\end{matrix}\right.\)

Xét các t/h:

4 tháng 2 2017

là số 1

8 tháng 2 2017

số 1 và -1

24 tháng 4 2017

\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại

=> (x-2).(x-4)<0 <=> 2<x<4

b. ta có\(x^2+1>0\forall x\)

=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1

<=> -1<x<1

câu c bạn làm tương tự

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)