Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
a)\(\frac{-5}{6}\).\(\frac{120}{25}\)<x<\(\frac{-7}{15}\).\(\frac{9}{14}\)
-4 <x<\(\frac{-3}{10}\)
\(\frac{-40}{10}\)< x <\(\frac{-3}{10}\)=>x E {-39:-38:-37:.....:-4}
b)\(\left(\frac{-5}{3}\right)^3\)<x<\(\frac{-24}{35}.\frac{-5}{6}\)
\(\frac{-875}{189}< x< \frac{108}{189}\)
=> x E {\(\frac{-874}{189},\frac{-873}{189},......,\frac{107}{189}\)}
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)
Câu 1,
x+y=-1/3 ; y+z=5/4 ; x+z= 4/3
=> 2(x+y+z)=9/4
=> x+y+z=9/8
Ta lại có: x+y=-1/3
=> z=9/8 -(-1/3)=35/24
Ta lại có: z+y=5/4
=> y=-5/24
=> x=.....
Câu 2:
\(-4\le x\le-\frac{11}{18}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x-x=-\frac{2}{3}\)
\(x=\frac{-2}{3}+\frac{5}{6}\)
\(x=\frac{-4}{6}+\frac{5}{6}\)
\(x=\frac{1}{6}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x=x-\frac{2}{3}\)
\(\Rightarrow x+x-\frac{5}{6}=x-\frac{2}{3}\Rightarrow x+x-x=-\frac{2}{3}+\frac{5}{6}\)
\(\Rightarrow x=\frac{1}{6}\Rightarrow\)x ko tồn tại