K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Nếu x≥27 thì T=427(1+473+4a-27)
Do 427 chính phương nên T chính phương khi 1+473+4a-27 chính phương.
Đặt 1+473+4a-27=n2
Có n2> 4a-27 = (2a-27 )2   nên n2≥(2a-27+1)2
Suy ra 1+473+4a-27 ≥ (2a-27+1)2  =  4a-27+2a-26 +1
=>  473  ≥   2 a-26
hay 73.2  ≥  a−26
vậy a  ≤  172
Thay a =172  có  T = 427.(1+2145)2 là số chính phương.
Vậy a lớn nhất bằng 172

14 tháng 12 2015

 

 Đặt             \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)

       \(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)

=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7

=>n =4a = 

=> m =2a  =

DD
20 tháng 6 2021

\(A=4^{27}+4^{2016}+4^n\)

Với \(n\ge27\)

\(A=4^{27}\left(1+4^{1989}+4^{n-27}\right)\)

\(A\)là số chính phương suy ra \(B=4^{n-27}+4^{1989}+1\)là số chính phương. 

\(B=\left(2^{n-27}\right)^2+2^{3978}+1\)

\(=\left(2^{3977+n-4004}\right)^2+2.2^{3977}+1\)

Với \(n=4004\)thì: 

\(B=\left(2^{3977}\right)^2+2.2^{3977}+1=\left(2^{3977}+1\right)^2\)là số chính phương.

Với \(n>4004\)thì: 

\(B>\left(2^{3977+n-4004}\right)^2\)

\(B< \left(2^{3977+n-4004}\right)^2+2.2^{3977+n-4004}+1\)

\(=\left(2^{3977+n-4004}+1\right)^2\)

Suy ra \(\left(2^{3977+n-4004}\right)^2< B< \left(2^{3977+n-4004}+1\right)^2\)do đó \(B\)không là số chính phương. 

Vậy giá trị lớn nhất của \(n\)là \(4004\).

18 tháng 12 2021

Bài 1

Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42

             =(x2+5xy+4y2)(x2+5xy+6y2)+42

 Đặt x2+5xy+5y2=t (t thuộc Z)

Khi đó A=(t-1)(t+1)+42

           A=t2-12+42

           A=(x2+5xy+5y2)2-12+42

Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z

Suy ra x2+5xy+5y2 thuộc Z

Suy ra (x2+5xy+5y2)2 là số chính phương

Ta lại có 12 và 42 cũng là số chính phương

Suy ra A là số chính phương (đpcm)

Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu. 

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Để $A$ min thì $\sqrt{x}-2$ là số âm lớn nhất

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị âm lớn nhất bằng $-1$

$\Leftrightarrow x=1$

Khi đó: $A_{\min}=\frac{1}{-1}=-1$

Để $A$ max thì $\sqrt{x}-2$ là số dương nhỏ nhất.

Với $x$ chính phương thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất bằng $1$

$\Leftrightarrow x=9$

Khi đó: $A=\frac{1}{1}=1$