K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{44}{45}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{44}{45}\)

\(1-\frac{1}{x+1}=\frac{44}{45}\)

\(\frac{1}{x+1}=1-\frac{44}{45}\)

\(\frac{1}{x+1}=\frac{1}{45}\)

=> x + 1 = 45

    x = 45 - 1

    x = 44

16 tháng 5 2017

Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\)\(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)\(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)

=> \(S< \frac{3}{4}\)

16 tháng 5 2017

Mình nhầm 1 chỗ: \(\frac{1}{1.2+2.3+3.4}=\frac{3}{3.4.5}\)

22 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

22 tháng 7 2017

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

24 tháng 8 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\) 

\(\Rightarrow a=\frac{2020}{2019}\)

24 tháng 8 2019

=.> 1-1/2+1/2-1/3+.......+1/2019-1/2020=1/x

=>1-1/2020=1/x

=>2019/2020=1/x

=>2019x=2020

=>x=2020/2019

    k nha

 giúp mk lên 300sp

21 tháng 4 2017

Bài 1: 

a ) = 12/21

b ) = 50

k cho mik nha

21 tháng 4 2017

Các bn giải cụ thể ra giúp mk đc k? c. ơn các bn

12 tháng 8 2015

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{10-8}{8.9.10}\right).x=\frac{23}{45}\)

\(\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}:\frac{1}{2}\)

\(\left(\frac{1}{2}-\frac{1}{9.10}\right).x=\frac{46}{45}\)

\(\frac{22}{45}.x=\frac{46}{45}\)

\(x=\frac{46}{45}:\frac{22}{45}\)

\(x=\frac{23}{11}\)

12 tháng 8 2015

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

Ta có:\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{9.10}\right)=\frac{1}{2}\cdot\frac{22}{45}=\frac{11}{45}\)

=>\(\frac{11}{45}\cdot x=\frac{23}{45}\)

=>11x=23

=>x=23/11

15 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{6}{7}=\frac{1}{7}\)

\(\Rightarrow x+1=7\)

\(\Rightarrow x=7-1=6\)

vậy x = 6

15 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{x\left(x+1\right)}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...........-\frac{1}{x}-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{7}\)

\(\Rightarrow x+1=7\)

\(\Rightarrow x=6\)

Vậy x = 6

2 tháng 2 2016

\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)

=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)

=> 27x - 27 = 30x - 10

=> 27x - 30x = -10 + 27

=> -3x = 17

=> x = -17/3.

13 tháng 7 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x.\left(x+1\right)}=\frac{88}{100}\)

\(\Leftrightarrow\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{\left(x+1\right)-x}{x.\left(x+1\right)}=\frac{88}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{88}{100}\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{88}{100}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{88}{100}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{3}{25}\)

\(\Leftrightarrow\left(x+1\right)\cdot3=1\cdot25\)

\(\Leftrightarrow x+1=\frac{25}{3}\)

\(\Leftrightarrow x=\frac{25}{3}-1=\frac{22}{3}\)

13 tháng 7 2017

\(\frac{1}{1.2} +\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{88}{100}\)

<=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{88}{100}\)

<=>\(1-\frac{1}{x+1}=\frac{88}{100}\)<=>\(\frac{x}{x+1}=\frac{88}{100}\Leftrightarrow100x=88x+88\Leftrightarrow12x=88\Leftrightarrow x=\frac{22}{3}\)