K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x2 + 3x - 13 

= x2 - 4x + 4 + 7x - 14 - 3 

= ( x - 2 )2 + 7( x - 2 ) - 3 

Để ( x - 2 )2 + 7( x - 2 ) - 3  \(⋮\)x - 2 

=>  -3 \(⋮\)x - 2

=> x - 2 \(\in\)Ư ( -3 ) = \(\left\{\pm1;\pm3\right\}\)Lập bảng 

x - 2               -3             -1                1               3 
x               -1             1                3               5

Vậy x \(\in\){ - 1 ; 1 ; 3 ; 5 }

25 tháng 5 2019

Đkxđ : \(x\ne2\)

\(A=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{4}{x-2}\)

\(=x+2+\frac{4}{x-2}\)

Để \(A\in Z\Rightarrow\frac{4}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ_4\)

Mà \(Ư_4=\left\{1,-1,2,-2,4,-4\right\}\)

\(\Rightarrow....\)

Xét 6 trường hợp tìm ra x nha. 

25 tháng 5 2019

Để A là số nguyên thì \(x^2⋮x-2\)(1)

                               \(x-2⋮x-2\)\(\Rightarrow x^2-4x+4⋮x-2\)(2)

Trừ vế (1) cho (2) thì \(4x-4⋮x-2\)(3)

                              \(x-2⋮x-2\Rightarrow4x-8⋮x-2\)(4)

Trừ (3) cho (4) thì \(4⋮x-2\)

Vậy x-2 thuộc Ư(4)

.............

\(M=\frac{2x}{2x-6}=\frac{2x-6+6}{2x-6}=1+\frac{3}{x-3}\)

Để M nguyên thì \(3⋮x-3\)

\(\Rightarrow x-3\in\left\{1,3,-1,-3\right\}\)

\(\Rightarrow x\in\left\{4,6,2,0\right\}\)

23 tháng 11 2019

Ta có : 2x \(⋮\)2x - 6

\(\Leftrightarrow\)2x - 6 + 6 \(⋮\)2x - 6

Để M đạt giá trị nguyên

\(\Leftrightarrow\)2x - 6 \(\in\)Ư( 6 ) = { \(\pm\)1 ; \(\pm\)2 ; \(\pm\)3 ; \(\pm\)6 }

Ta lập bảng :

2x - 61- 12- 23- 36- 6
x7 / 25 / 2429 / 23 / 260

Vì x\(\in\)Z nên ta chọn : x \(\in\){ 0 ; 2 ; 4 ; 6 }

24 tháng 4 2018

     \(4x^2+4y^2-12x-12y+20=0\)

\(\Leftrightarrow\)\(4x^2-12x+9+4y^2-12y+9+2=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2=0\)

Vì   \(\left(2x-3\right)^2\ge0;\) \(\left(2y-3\right)^2\ge0\)

\(\Rightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2\ge2\)

Vậy pt vô nghiệm

24 tháng 4 2018

\(4x^2-12x+9+4y^2-12y+9+2=0\)

mặt khác

\(\left(2x-3\right)^2+ \left(2y-3\right)^2+2=0\)

\(\left(2x-3\right)^2+\left(2y-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+\left(2y-3\right)^2+2>0\)

=> PTVN

a, \(ĐKXĐ:x\ne\pm\frac{1}{5},x\ne\frac{3}{2}\)

\(\Rightarrow P=\frac{\left(5x+1\right)\left(x+2\right)}{\left(2x-3\right)\left(5x-1\right)\left(5x+1\right)}-\frac{\left(8-3x\right)\left(5x+1\right)}{\left(5x-1\right)\left(5x+1\right)\left(2x-3\right)}\)

\(=\frac{x+2}{\left(2x-3\right)\left(5x-1\right)}-\frac{8-3x}{\left(5x-1\right)\left(2x-3\right)}\)

\(=\frac{2\left(2x-3\right)}{\left(2x-3\right)\left(5x-1\right)}=\frac{2}{5x-1}\)

b, Để P có giá trị nguyên thì  \(2⋮5x-1\)

\(\Rightarrow5x-1\in\left\{1,2,-1,-2\right\}\)

=> x=..............

13 tháng 10 2019

ĐKXĐ : x \(\ne\frac{3}{2}\) ; \(x\ne\frac{1}{5};x\ne-\frac{1}{5}\) 

P= \(\frac{5x+1}{2x-3}.\left(\frac{x+2}{25x^2-1}-\frac{8-3x}{25x^2-1}\right)\) 

P= \(\frac{5x-1}{2x-3}.\left(\frac{4x-6}{\left(5x+1\right).\left(5x-1\right)}\right)\)

P= \(\frac{5x-1}{2x-3}.\frac{2\left(2x-3\right)}{\left(5x-1\right)\left(5x+1\right)}\) 

P= \(\frac{2}{5x-1}\) 

KL