Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x+2-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x+2-x+2\right]=0\)
\(\Leftrightarrow4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
c ) \(x^3-8=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2+2x+4-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2=-\dfrac{23}{4}\end{matrix}\right.\) ( Vô lý )
Vậy \(x=2\)
d ) \(x^3+5x^2-4x-20=0\)
\(\Leftrightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-5\end{matrix}\right.\)
Vậy ...
e ) \(x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy ...
f ) \(x^2-25+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
g ) Sai đề
h ) \(x^2\left(x-2\right)+7x=14\)
\(\Leftrightarrow x^2\left(x-2\right)+7x-14=0\)
\(\Leftrightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-7\left(VL\right)\\x=2\end{matrix}\right.\)
Vậy \(x=2\)
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!
Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi
\(x^2+2x-3\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(x+3\right)\)
\(x^2-10x+9\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-9\right)\left(x-1\right)\)
\(x^2-2x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-5\right)\left(x+3\right)\)
\(x^2-2x-48\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-8\right)\left(x+6\right)\)
\(x^2-10x+24\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-6\right)\left(x-4\right)\)
\(4x^2+4x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(2x-3\right)\left(2x+5\right)\)
\(3x^2-7x+2\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-2\right)\left(3x-1\right)\)
\(4x^2-5x+1\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(4x-1\right)\)
Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:
a) x^2 + x +1
b) x^2 + 3x+3
c) x^2 + y^2 + 2(x-2y) +6
d) 2x^2 + y^2 + 2x( y-1) +2
Bài 2: Phân tích thành nhân tử:
a) x^2 + 2x-3
b) x^2 - 10x +9
c) x^2 - 2x -15
d) x^2 - 2x -48
e) x^2 - 10x+24
f)4x^2 + 4x -15
g) 3x^2 - 7x +2
h) 4x^2 - 5x +1
Bài 3: Tìm x biết :
a) x^2 +5x+6=0
b) x^2 - 10x + 16=0
c) x^2 - 10x +21=0
d) x^2 - 2x -3 =0
e) 2x^2 + 7x +3=0
f) x^2 - x- 6=0
Bài 4:
a)x^3 + 2x^2 - 3=0
b) x^3 - 7x -6=0
c) x^3 + x^2 +4=0
d) x^3 - 2x^2 - x+2 =0
Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi
x2+2x−3
phân tích đa thức thành nhân tử
(x−1)(x+3)
x2−10x+9
phân tích đa thức thành nhân tử
(x−9)(x−1)
x2−2x−15
phân tích đa thức thành nhân tử
(x−5)(x+3)
x2−2x−48
phân tích đa thức thành nhân tử
(x−8)(x+6)
x2−10x+24
phân tích đa thức thành nhân tử
(x−6)(x−4)
4x2+4x−15
phân tích đa thức thành nhân tử
(2x−3)(2x+5)
3x2−7x+2
phân tích đa thức thành nhân tử
(x−2)(3x−1)
4x2−5x+1
phân tích đa thức thành nhân tử
(x−1)(4x−1)
dài quá !