K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 9 2021

\(9x^2+12x+21=4y^2\)

\(\Leftrightarrow4y^2-\left(9x^2+12x+4\right)=17\)

\(\Leftrightarrow\left(2y\right)^2-\left(3x+2\right)^2=17\)

\(\Leftrightarrow\left(2y-3x-2\right)\left(2y+3x+2\right)=17=1.17\)

Ta có bảng giá trị: 

2y-3x-2117-1-17
2y+3x+2171-17-1
x2-10/3 (l)-10/3 (l)2
y9/2 (l)  9/2 (l)

Vậy phương trình không có nghiệm nguyên. 

12 tháng 7 2016

\(9x^2+12x-4y^2-17=0\)

\(\Leftrightarrow\left(3x+2\right)^2-4y^2-21=0\)

\(\Leftrightarrow\left(3x+2y+2\right)\left(3x-2y+2\right)=21\)

Xét 

TH1:\(\hept{\begin{cases}3x+2y+2=1\\3x-2y+2=21\end{cases}\Leftrightarrow x=3;y=-5\left(thỏa\right)}\)

TH2:\(\hept{\begin{cases}3x+2y+2=21\\3x-2y+2=1\end{cases}\Leftrightarrow x=3;y=5\left(thỏa\right)}\)

TH3:\(\hept{\begin{cases}3x+2y+2=-1\\3x-2y+2=-21\end{cases}\Leftrightarrow x=\frac{-13}{3};y=5\left(k.thỏa\right)}\)

TH4:\(\hept{\begin{cases}3x+2y+2=-21\\3x-2y+2=-1\end{cases}\Leftrightarrow x=\frac{-13}{3};y=-5\left(k.thỏa\right)}\)

TH5:\(\hept{\begin{cases}3x+2y+2=3\\3x-2y+2=7\end{cases}\Leftrightarrow x=1;y=-1\left(thỏa\right)}\)

TH6:\(\hept{\begin{cases}3x+2y+2=7\\3x-2y+2=3\end{cases}\Leftrightarrow x=y=1\left(thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-3\\3x-2y+2=-7\end{cases}\Leftrightarrow x=\frac{-7}{3};y=1\left(k.thỏa\right)}\)

TH7:\(\hept{\begin{cases}3x+2y+2=-7\\3x-2y+2=-3\end{cases}\Leftrightarrow x=\frac{-7}{3};y=-1\left(k.thỏa\right)}\)

Vậy \(\left(a;b\right)=\left(3;5\right)=\left(3;-5\right)=\left(1;1\right)=\left(1;-1\right)\)

4 tháng 12 2016

chtt đi bạn

10 tháng 7 2016

\(\sqrt{9x^2+12x+4}=4\Leftrightarrow\sqrt{\left(3x+2\right)^2}=4\Leftrightarrow\left|3x+2\right|=4\)

  • Với \(x\ge-\frac{2}{3}\), phương trình tương đương với \(3x+2=4\Leftrightarrow x=\frac{2}{3}\left(TM\right)\)
  • Với \(x< -\frac{2}{3}\), phương trình tương đương với \(3x+2=-4\Leftrightarrow x=-2\)(TM)

Vậy tập nghiệm của phương trình : \(S=\left\{-2;\frac{2}{3}\right\}\)

22 tháng 5 2016

1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 

(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1) 

Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1). 

Nên từ (1) ta có: 

(xy-1) chia hết (x2+1) 

=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y) 

Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho: 

x+y = z(xy-1) <=> x+y+z =xyz (2) 

Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z. 

Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1 

=> 3 \(\ge\) y => y \(\in\) {1;2;3} 

Nếu y=1: x+2 =x (loại) 

Nếu y=2: (2) trở thành x+3 =2x => x=3 

Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y) 

Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)

2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)

\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2016

cách làm đúng nhưng đoạn đầu của bài 1 bị ngược rồi ạ

26 tháng 8 2015

Ta có  \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\to\sqrt{3x^2-12x+16}\ge\sqrt{4}=2.\)

Tương tự \(y^2-4y+13=\left(y-2\right)^2+9\ge9\to\sqrt{y^2-4y+13}\ge3\)

Vậy vế ta có \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5.\) Để dấu bằng xảy ra thì \(x=y=2.\)

Đáp số \(x=y=2.\)

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

11 tháng 5 2016

\(A=\frac{x^3-3x^2-2x^2+6x+3x-9+7}{x-3}\)

\(A=\frac{x^2\left(x-3\right)-2x\left(x-3\right)+3\left(x-3\right)+7}{x-3}\)

\(A=\frac{\left(x-3\right)\left(x^2-2x+3\right)+7}{x-3}\)

\(A=x^2-2x+3+\frac{7}{x-3}\)

\(x\in Z,x>0;=>A\in Z<=>\frac{7}{x-3}\in Z\)

x-31-17-7
x4210-4

Vậy \(A\in Z<=>x\in\left\{-4;2;4;10\right\}\)

11 tháng 5 2016

\(<=>x-3\inƯ\left(7\right)\)